Advancements in biomimetic nanomaterials in the activation of NFκb receptors in cancer

Authors

  • Aayush Universiti Putra Malaysia

DOI:

https://doi.org/10.22452/mnij.vol4no1.1

Keywords:

Protein, pro-apoptotic, tumour, carbon nanomaterials, immuno-nanomedicines

Abstract

Biomimetic nanomaterials are catching up in the field of oncology with the traditional methods of treating cancer. One of the main causes of cancer is the misregulation of NF-κB receptors in the body. They are essential for the DNA transcription, cytokine synthesis and cell survival. This study includes the roles of different biomimetic particles involved in the activation of NF-kB pathway that leads to cancer. Nuclear factor-kB (NF-kB) transcription factors are involved in a variety of physiological processes, including innate and adaptive immunological responses, cell proliferation, cell death, and inflammation. It has been established that abnormal regulation of NF-kB and the signalling pathways that govern its activity play a role in cancer formation and development, as well as tolerance to chemo- and radiotherapy. Future treatment options in nanotech. for the treatment of cancer includes the conjugation of nanoparticles and antibodies in order to supress the activation of NF-kB receptor and the use of carbon-based nanomaterial like graphene.

Downloads

Download data is not yet available.

References

Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 2006 Oct 30;25(51):6680-4. doi: 10.1038/sj.onc.1209954. PMID: 17072321.

Brasier AR. The NF-kappaB regulatory network. Cardiovasc Toxicol. 2006;6(2):111-30. doi: 10.1385/ct:6:2:111. PMID: 17303919.

Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007 Jan;8(1):49-62. doi: 10.1038/nrm2083. PMID: 17183360.

Gilmore TD. The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene. 1999 Nov 22;18(49):6842-4. doi: 10.1038/sj.onc.1203237. PMID: 10602459.

Tian B, Brasier AR. Identification of a nuclear factor kappa B-dependent gene network. Recent Prog Horm Res. 2003;58:95-130. doi: 10.1210/rp.58.1.95. PMID: 12795416.

Albensi BC, Mattson MP. Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse. 2000 Feb;35(2):151-9. doi: 10.1002/(SICI)1098-2396(200002)35:2<151:AID-SYN8>3.0.CO;2-P. PMID: 10611641.

Meffert MK, Chang JM, Wiltgen BJ, Fanselow MS, Baltimore D. NF-kappa B functions in synaptic signaling and behavior. Nat Neurosci. 2003 Oct;6(10):1072-8. doi: 10.1038/nn1110. Epub 2003 Aug 31. Erratum in: Nat Neurosci. 2003 Dec;6(12):1329. PMID: 12947408.

Levenson JM, Choi S, Lee SY, Cao YA, Ahn HJ, Worley KC, Pizzi M, Liou HC, Sweatt JD. A bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-rel. J Neurosci. 2004 Apr 21;24(16):3933-43. doi: 10.1523/JNEUROSCI.5646-03.2004. PMID: 15102909; PMCID: PMC6729420.

Freudenthal R, Locatelli F, Hermitte G, Maldonado H, Lafourcade C, Delorenzi A, Romano A. Kappa-B like DNA-binding activity is enhanced after spaced training that induces long-term memory in the crab Chasmagnathus. Neurosci Lett. 1998 Feb 20;242(3):143-6. doi: 10.1016/s0304-3940(98)00059-7. PMID: 9530926.

Merlo E, Freudenthal R, Romano A. The IkappaB kinase inhibitor sulfasalazine impairs long-term memory in the crab Chasmagnathus. Neuroscience. 2002;112(1):161-72. doi: 10.1016/s0306-4522(02)00049-0. PMID: 12044481.

Park HJ, Youn HS. Mercury induces the expression of cyclooxygenase-2 and inducible nitric oxide synthase. Toxicol Ind Health. 2013 Mar;29(2):169-74. doi: 10.1177/0748233711427048. Epub 2011 Nov 11. PMID: 22080037.

Aggarwal B.B. (2003).Signalling pathways of the TNF superfamily. Nature Reviews Immunology, 3(9),745-756.

Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986 Aug 29;46(5):705-16. doi: 10.1016/0092-8674(86)90346-6. PMID: 3091258.

Vlahopoulos SA. Aberrant control of NF-κB in cancer permits transcriptional and phenotypic plasticity, to curtail dependence on host tissue: molecular mode. Cancer Biol Med. 2017 Aug;14(3):254-270. doi: 10.20892/j.issn.2095-3941.2017.0029. PMID: 28884042; PMCID: PMC5570602.

Vlahopoulos SA, Cen O, Hengen N, Agan J, Moschovi M, Critselis E, Adamaki M, Bacopoulou F, Copland JA, Boldogh I, Karin M, Chrousos GP. Dynamic aberrant NF-κB spurs tumorigenesis: a new model encompassing the microenvironment. Cytokine Growth Factor Rev. 2015 Aug;26(4):389-403. doi: 10.1016/j.cytogfr.2015.06.001. Epub 2015 Jun 20. PMID: 26119834; PMCID: PMC4526340.

Sheikh MS, Huang Y. Death receptor activation complexes: it takes two to activate TNF receptor 1. Cell Cycle. 2003 Nov-Dec;2(6):550-2. PMID: 14504472.

Li YY, Chung GT, Lui VW, To KF, Ma BB, Chow C, Woo JK, Yip KY, Seo J, Hui EP, Mak MK, Rusan M, Chau NG, Or YY, Law MH, Law PP, Liu ZW, Ngan HL, Hau PM, Verhoeft KR, Poon PH, Yoo SK, Shin JY, Lee SD, Lun SW, Jia L, Chan AW, Chan JY, Lai PB, Fung CY, Hung ST, Wang L, Chang AM, Chiosea SI, Hedberg ML, Tsao SW, van Hasselt AC, Chan AT, Grandis JR, Hammerman PS, Lo KW. Exome and genome sequencing of nasopharynx cancer identifies NF-κB pathway activating mutations. Nat Commun. 2017 Jan 18;8:14121. doi: 10.1038/ncomms14121. PMID: 28098136; PMCID: PMC5253631.

Sun SC. Non-canonical NF-κB signaling pathway. Cell Res. 2011 Jan;21(1):71-85. doi: 10.1038/cr.2010.177. Epub 2010 Dec 21. PMID: 21173796; PMCID: PMC3193406.

Nouri M, Massah S, Caradec J, Lubik AA, Li N, Truong S, Lee AR, Fazli L, Ramnarine VR, Lovnicki JM, Moore J, Wang M, Foo J, Gleave ME, Hollier BG, Nelson C, Collins C, Dong X, Buttyan R. Transient Sox9 Expression Facilitates Resistance to Androgen-Targeted Therapy in Prostate Cancer. Clin Cancer Res. 2020 Apr 1;26(7):1678-1689. doi: 10.1158/1078-0432.CCR-19-0098. Epub 2020 Jan 9. PMID: 31919137.

Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018 May;18(5):309-324. doi: 10.1038/nri.2017.142. Epub 2018 Jan 22. PMID: 29379212.

Sun L, Mathews LA, Cabarcas SM, Zhang X, Yang A, Zhang Y, Young MR, Klarmann KD, Keller JR, Farrar WL. Epigenetic regulation of SOX9 by the NF-κB signaling pathway in pancreatic cancer stem cells. Stem Cells. 2013 Aug;31(8):1454-66. doi: 10.1002/stem.1394. PMID: 23592398; PMCID: PMC3775871.

Escárcega RO, Fuentes-Alexandro S, García-Carrasco M, Gatica A, Zamora A. The transcription factor nuclear factor-kappa B and cancer. Clin Oncol (R Coll Radiol). 2007 Mar;19(2):154-61. doi: 10.1016/j.clon.2006.11.013. PMID: 17355113.

Liu F, Bardhan K, Yang D, Thangaraju M, Ganapathy V, Waller JL, Liles GB, Lee JR, Liu K. NF-κB directly regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression. J Biol Chem. 2012 Jul 20;287(30):25530-40. doi: 10.1074/jbc.M112.356279. Epub 2012 Jun 5. PMID: 22669972; PMCID: PMC3408167.

Mercurio F, Manning AM: Multiple signals converging on NF-B. Curr Opin Cell Biol 11:226–232, 1999.

Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002; 2: 301–10.

Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004; 25: 280–8.

Greten FR, Eckmann L, Greten TF et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118: 285–96.

Pikarsky E, Porat RM, Stein I et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431: 461–6.

Yamamoto M, Yamazaki S, Uematsu S et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature 2004; 430: 218–22.

Kuwata H, Matsumoto M, Atarashi K et al. IkappaBNS inhibits induction of a subset of Toll-like receptor-dependent genes and limits inflammation. Immunity 2006; 24: 41–51.

Bours V, Franzoso G, Azarenko V et al. The oncoprotein Bcl-3 directly transactivates through kappa B motifs via association with DNA-binding p50B homodimers. Cell 1993; 72: 729–39.

Tada K, Okazaki T, Sakon S et al. Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death. J Biol Chem 2001; 276: 36 530–4.

Kobayashi N, Kadono Y, Naito A et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J, 2001; 20: 1271–80.

Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. TRAF6 is a signal transducer for interleukin-1. Nature 1996; 383: 443–6.

van der Saag PT, Caldenhoven E, van de Stolpe A. Molecular mechanisms of steroid action: a novel type of crosstalk between glucocorticoids and NF-kappa B transcription factors. Eur Respir J Suppl. 1996; 22:146s–153s. [PubMed: 8871061]

Iademarco MF, McQuillan JJ, Rosen GD, Dean DC. Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). J Biol Chem. 1992; 267:16323–16329. [PubMed: 1379595].

Whelan J, Ghersa P, van Huijsduijnen RH, Gray J, Chandra G, Talabot F, DeLamarter JF. An NF kappa B-like factor is essential but not sufficient for cytokine induction of endothelial leukocyte adhesion molecule 1 (ELAM-1) gene transcription. Nucleic Acids Res. 1991; 19:2645–2653. [PubMed: 1710341]

Park BK, Zhang H, Zeng Q, Dai J, Keller ET, Giordano T, Gu K, Shah V, Pei L, Zarbo RJ, McCauley L, Shi S, Chen S, Wang CY. NF-kappaB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclast genesis via GM-CSF. Nat Med. 2007; 13:62–69. [PubMed: 17159986]

Loch T, Michalski B, Mazurek U, Graniczka M. Vascular endothelial growth factor (VEGF) and its role in neoplastic processes. Postepy Hig Med Dosw. 2001; 55:257–274. [PubMed: 11468973]

Oyama T, Miyoshi Y, Koyama K, Nakagawa H, Yamori T, Ito T, Matsuda H, Arakawa H, Nakamura Y. Isolation of a novel gene on 8p21.3–22 whose expression is reduced significantly in human colorectal cancers with liver metastasis. Genes Chromosomes Cancer. 2000; 29:9–15. [PubMed: 10918388]

Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res. 2000; 6:3282–3289. [PubMed: 10955814]

Chilov D, Kukk E, Taira S, Jeltsch M, Kaukonen J, Palotie A, Joukov V, Alitalo K. Genomic organization of human and mouse genes for vascular endothelial growth factor C. J Biol Chem. 1997; 272:25176–25183. [PubMed: 9312130]

Shakhov AN, Kuprash DV, Azizov MM, Jongeneel CV, Nedospasov SA. Structural analysis of the rabbit TNF locus, containing the genes encoding TNF-beta (lymphotoxin) and TNF-alpha (tumor necrosis factor). Gene. 1990; 95:215–221. [PubMed: 2249779]

Ueda A, Okuda K, Ohno S, Shirai A, Igarashi T, Matsunaga K, Fukushima J, Kawamoto S, Ishigatsubo Y, Okubo T. NF-kappa B and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol. 1994; 153:2052–2063. [PubMed: 8051410]

Collart MA, Baeuerle P, Vassalli P. Regulation of tumor necrosis factor alpha transcription in macrophages: involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B. Mol Cell Biol. 1990; 10:1498–1506. [PubMed: 2181276]

Kalgutkar AS, Zhao Z. Discovery and design of selective cyclooxygenase-2 inhibitors as nonulcerogenic, anti-inflammatory drugs with potential utility as anti-cancer agents. Curr Drug Targets. 2001; 2:79–106. [PubMed: 11465540]

Marrogi A, Pass HI, Khan M, Metheny-Barlow LJ, Harris CC, Gerwin BI. Human mesothelioma samples overexpress both cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (NOS2): in vitro antiproliferative effects of a COX-2 inhibitor. Cancer Res. 2000; 60:3696–3700. [PubMed: 10919635]

Noguchi Y, Makino T, Yoshikawa T, Nomura K, Fukuzawa K, Matsumoto A, Yamada T. The possible role of TNF-alpha and IL-2 in inducing tumor-associated metabolic alterations. Surg Today. 1996; 26:36–41. [PubMed: 8680118]

Tomimatsu S, Ichikura T, Mochizuki H. Significant correlation between expression of interleukin-1alpha and liver metastasis in gastric carcinoma. Cancer. 2001; 91:1272–1276. [PubMed: 11283926]

Klotz T, Bloch W, Jacobs G, Niggemann S, Engelmann U, Addicks K. Immunolocalization of inducible and constitutive nitric oxide synthases in human bladder cancer. Urology. 1999; 54:416–419. [PubMed: 10475345]

Dong Z, Nemeth JA, Cher ML, Palmer KC, Bright RC, Fridman R. Differential regulation of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression in co-cultures of prostate cancer and stromal cells. Int J Cancer. 2001; 93:507–515. [PubMed: 11477554]

Pacheco MM, Nishimoto IN, Mourao Neto M, Mantovani EB, Brentani MM. Prognostic significance of the combined expression of matrix metalloproteinase-9, urokinase type plasminogen activator and its receptor in breast cancer as measured by Northern blot analysis. Int J Biol Markers. 2001; 16:62–68. [PubMed: 11288958]

Scotton CJ, Wilson JL, Milliken D, Stamp G, Balkwill FR. Epithelial cancer cell migration: a role for chemokine receptors? Cancer Res. 2001; 61:4961–4965. [PubMed: 11431324]

Strieter RM. Mechanisms of pulmonary fibrosis: conference summary. Chest. 2001; 120:77S– 85S. [PubMed: 11451940]

Palmer K, Hitt M, Emtage PC, Gyorffy S, Gauldie J. Combined CXC chemokine and interleukin-12 gene transfer enhances antitumor immunity. Gene Ther. 2001; 8:282–290. [PubMed: 11313802]

Abbadie C, Kabrun N, Bouali F, Smardova J, Stehelin D, Vandenbunder B, Enrietto PJ. High levels of c-rel expression are associated with programmed cell death in the developing avian embryo and in bone marrow cells in vitro. Cell. 1993; 75:899–912. [PubMed: 8252626]

Dumont A, Hehner SP, Hofmann TG, Ueffing M, Droge W, Schmitz ML. Hydrogen peroxideinduced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene. 1999; 18:747–757. [PubMed: 9989825]

Kasibhatla S, Brunner T, Genestier L, Echeverri F, Mahboubi A, Green DR. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol Cell. 1998; 1:543–551. [PubMed: 9660938]

Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M. NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med. 1999; 5:554–559. [PubMed: 10229233]

Qin ZH, Chen RW, Wang Y, Nakai M, Chuang DM, Chase TN. Nuclear factor kappaB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor-mediated apoptosis in rat striatum. J Neurosci. 1999; 19:4023–4033. [PubMed: 10234031]

DeMeester SL, Buchman TG, Qiu Y, Dunnigan K, Hotchkiss RS, Karl IE, Cobb JP. Pyrrolidine dithiocarbamate activates the heat shock response and thereby induces apoptosis in primed endothelial cells. Shock. 1998; 10:1–6. [PubMed: 9688083]

Chan H, Bartos DP, Owen-Schaub LB. Activation-dependent transcriptional regulation of the human Fas promoter requires NF-kappaB p50–p65 recruitment. Mol Cell Biol. 1999; 19:2098– 2108. [PubMed: 10022897]

Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J. Nuclear factor (NF)- kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med. 1998; 188:211–216. [PubMed: 9653098]

Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr. NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 1999; 19:5785–5799. [PubMed: 10409765]

Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M. NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol. 1999; 19:2690–2698. [PubMed: 10082535]

Bash J, Zong WX, Gelinas C. c-Rel arrests the proliferation of HeLa cells and affects critical regulators of the G1/S-phase transition. Mol Cell Biol. 1997; 17:6526–6536. [PubMed: 9343416]

Ravi R, Mookerjee B, van Hensbergen Y, Bedi GC, Giordano A, El-Deiry WS, Fuchs EJ, Bedi A. p53-mediated repression of nuclear factor-kappaB RelA via the transcriptional integrator p300. Cancer Res. 1998; 58:4531–4536. [PubMed: 9788595]

Yang Y, Xia Q, Lian F. p53 mutations and protein overexpression in primary colorectal cancer and its liver metastasis. Zhonghua Zhong Liu Za Zhi. 1999; 21:114–118. [PubMed: 11776850]

Y. Kabe, K. Ando, S. Hirao, M. Yoshida, H. Handa, Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus, Antioxidants Redox Signal. 7 (3–4) (2005) 395–403.

M. Karin, Y. Cao, F.R. Greten, Z.W. Li, NF-kappaB in cancer: from innocent bystander to major culprit, Nat. Rev. Canc. 2 (4) (2002) 301–310.

K.S. Ahn, B.B. Aggarwal, Transcription factor NF-kappaB: a sensor for smoke and stress signals, Ann. N. Y. Acad. Sci. 1056 (2005) 218–233.

E. Pikarsky, R.M. Porat, I. Stein, R. Abramovitch, S. Amit, S. Kasem, E. GutkovichPyest, S. Urieli-Shoval, E. Galun, Y. Ben-Neriah, NF-kappaB functions as a tumour promoter in inflammation-associated cancer, Nature 431 (2004) 461–466 7007.

M. Karin, F.R. Greten, NF-kappaB: linking inflammation and immunity to cancer development and progression, Nat. Rev. Immunol. 5 (10) (2005) 749–759.

K.P. Zeligs, M.K. Neuman, C.M. Annunziata, Molecular pathways: the balance between cancer and the immune system challenges the therapeutic specificity of targeting nuclear factor-κB signaling for cancer treatment, Clin. Canc. Res. 22 (17) (2016) 4302.

F.R. Greten, M. Karin, The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer, Canc. Lett. 206 (2) (2004) 193–199.

B. Kim, J.-H. Park, M.J. Sailor, Rekindling RNAi therapy: materials design requirements for in vivo siRNA delivery, Adv. Mater. 31 (49) (2019) 1903637.

J. Kokkinos, R.M.C. Ignacio, G. Sharbeen, C. Boyer, E. Gonzales-Aloy, D. Goldstein, J.A. McCarroll, P.A. Phillips, Targeting the undruggable in pancreatic cancer using nano-based gene silencing drugs, Biomaterials 240 (2020) 119742.

Chen YP, Chen CT, Liu TP, Chien FC, Wu SH, Chen P, Mou CY. Catcher in the rel: Nanoparticles-antibody conjugate as NF-κB nuclear translocation blocker. Biomaterials. 2020 Jul;246:119997. doi: 10.1016/j.biomaterials.2020.119997. Epub 2020 Mar 30. PMID: 32247937.

H.M. Yang, C.W. Park, M.A. Woo, M.I. Kim, Y.M. Jo, H.G. Park, J.D. Kim, HER2/neu antibody conjugated poly(amino acid)-coated iron oxide nanoparticles for breast cancer MR imaging, Biomacromolecules 11 (11) (2010) 2866–2872.

P.A. McCarron, W.M. Marouf, D.J. Quinn, F. Fay, R.E. Burden, S.A. Olwill, C.J. Scott, Antibody targeting of camptothecin-loaded PLGA nanoparticles to tumor cells, Bioconjugate Chem. 19 (8) (2008) 1561–1569.

M. Rizzuti, M. Nizzardo, C. Zanetta, A. Ramirez, S. Corti, Therapeutic applications of the cell-penetrating HIV-1 Tat peptide, Drug Discov. Today 20 (1) (2015) 76–85.

Y.P. Chen, C.T. Chen, Y. Hung, C.M. Chou, T.P. Liu, M.R. Liang, C.T. Chen, C.Y. Mou, A new strategy for intracellular delivery of enzyme using mesoporous silica nanoparticles: superoxide dismutase, J. Am. Chem. Soc. 135 (4) (2013) 1516–1523.

W. Chen, C.A. Glackin, M.A. Horwitz, J.I. Zink, Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery, Acc. Chem. Res. 52 (6) (2019) 1531–1542.

D. Shao, M. Li, Z. Wang, X. Zheng, Y.-H. Lao, Z. Chang, F. Zhang, M. Lu, J. Yue, H. Hu, H. Yan, L. Chen, W.-f. Dong, K.W. Leong, Bioinspired diselenide-Bridged mesoporous silica nanoparticles for dual-responsive protein delivery, Adv. Mater. 30 (29) (2018) 1801198.

W. Sun, T. Shi, L. Luo, X. Chen, P. Lv, Y. Lv, Y. Zhuang, J. Zhu, G. Liu, X. Chen, H. Chen, Monodisperse and uniform mesoporous silicate nanosensitizers achieve low-dose X-ray-induced deep-penetrating photodynamic therapy, Adv. Mater. 31 (16) (2019) 1808024.

C.H. Wu, Y.P. Chen, C.Y. Mou, R.P. Cheng, Altering the Tat-derived peptide bioactivity landscape by changing the arginine side chain length, Amino Acids 44 (2) (2013) 473–480.

L. Pan, J. Liu, Q. He, J. Shi, MSN-mediated sequential vascular-to-cell nucleartargeted drug delivery for efficient tumor regression, Adv. Mater. 26 (39) (2014) 6742–6748.

L. Pan, Q. He, J. Liu, Y. Chen, M. Ma, L. Zhang, J. Shi, Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles, J. Am. Chem. Soc. 134 (13) (2012) 5722–5725.

L. Pan, J. Liu, Q. He, L. Wang, J. Shi, Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles, Biomaterials 34 (11) (2013) 2719–2730.

A. Battigelli, C. Menard-Moyon, T. Da Ros, M. Prato, A. Bianco, Adv. Drug Delivery Rev. 2013, 65, 1899.

M. VanHandel, D. Alizadeh, L. Zhang, B. Kateb, M. Bronikowski, H. Manohara, B. Badie, J. Neuroimmunol. 2009, 208, 3.

H. T. Fan, I. Zhang, X. B. Chen, L. Y. Zhang, H. Q. Wang, A. Da Fonseca, E. R. Manuel, D. J. Diamond, A. Raubitschek, B. Badie, Clin. Cancer Res. 2012, 18, 5628.

H. Zhou, K. Zhao, W. Li, N. Yang, Y. Liu, C. Chen, T. Wei, Biomaterials 2012, 33, 6933.

Y. Tao, E. Ju, J. Ren, X. Qu, Biomaterials 2014, 35, 9963.

Ovais, M., Guo, M., Chen, C., Tailoring Nanomaterials for Targeting Tumor-Associated Macrophages. Adv. Mater. 2019, 31, 1808303. https://doi.org/10.1002/adma.201808303

Glasgow MD, Chougule MB. Recent Developments in Active Tumor Targeted Multifunctional Nanoparticles for Combination Chemotherapy in Cancer Treatment and Imaging. J Biomed Nanotechnol. 2015 Nov;11(11):1859-98. doi: 10.1166/jbn.2015.2145. PMID: 26554150; PMCID: PMC4816444.

Nolan GP, Ghosh S, Liou HC, Tempst P, Baltimore D (Mar 1991). "DNA binding and I kappa B inhibition of the cloned p65 subunit of NF-kappa B, a rel-related polypeptide". Cell. 64 (5): 961–9. doi:10.1016/0092-8674(91)90320-X. PMID 2001591. S2CID 54363279.

Vlahopoulos S, Adamaki M, Khoury N, Zoumpourlis V, Boldogh I (February 2019). "Roles of DNA repair enzyme OGG1 in innate immunity and its significance for lung cancer". Pharmacology & Therapeutics. Elsevier. 194: 59–72. doi:10.1016/j.pharmthera.2018.09.004. PMC 6504182. PMID 30240635

Onishi S, Yamasaki F, Nakano Y, Takayasu T, Amatya VJ, Kolakshyapati M, Takeshima Y, Hirose T, Ichimura K, Sugiyama K, Kurisu K (January 2018). "RELA fusion-positive anaplastic ependymoma: molecular characterization and advanced MR imaging". Brain Tumor Pathology. 35 (1): 41–45. doi:10.1007/s10014-017-0301-0. PMID 29063976. S2CID 38404099.

Ahmed M, Lorence E, Wang J, Jung D, Zhang L, Nomie K, Wang M (February 2019). "Interrogating B cell signaling pathways: A quest for novel therapies for mantle cell lymphoma". Science Signaling. 12 (567): eaat4105. doi:10.1126/scisignal.aat4105. PMID 30723172.

Ali A, Kim SH, Kim MJ, Choi MY, Kang SS, Cho GJ, Kim YS, Choi JY, Choi WS (July 2017). "O-GlcNAcylation of NF-κB Promotes Lung Metastasis of Cervical Cancer Cells via Upregulation of CXCR4 Expression". Molecules and Cells. 40 (7): 476–484. doi:10.14348/molcells.2017.2309. PMC 5547217. PMID 28681591.

Gannon PO, Lessard L, Stevens LM, Forest V, Bégin LR, Minner S, Tennstedt P, Schlomm T, Mes-Masson AM, Saad F (Jul 2013). "Large-scale independent validation of the nuclear factor-kappa B p65 prognostic biomarker in prostate cancer". European Journal of Cancer. 49 (10): 2441–8. doi:10.1016/j.ejca.2013.02.026. PMID 23541563

Pyo JS, Kang G, Kim DH, Chae SW, Park C, Kim K, Do SI, Lee HJ, Kim JH, Sohn JH (Apr 2013). "Activation of nuclear factor-κB contributes to growth and aggressiveness of papillary thyroid carcinoma". Pathology, Research and Practice. 209 (4): 228 32. doi:10.1016/j.prp.2013.02.004. PMID 23528368

Liu J, Brown RE (2012). "Morphoproteomic confirmation of an activated nuclear factor-кBp65 pathway in follicular thyroid carcinoma". International Journal of Clinical and Experimental Pathology. 5 (3): 216–23. PMC 3341672. PMID 22558476

Trecca D, Guerrini L, Fracchiolla NS, Pomati M, Baldini L, Maiolo AT, Neri A (Feb 1997). "Identification of a tumor-associated mutant form of the NF-kappaB RelA gene with reduced DNA-binding and transactivating activities". Oncogene. 14 (7): 791–9. doi:10.1038/sj.onc.1200895. PMID 9047386

Balermpas P, Michel Y, Wagenblast J, Seitz O, Sipek F, Rödel F, Rödel C, Fokas E (Jul 2013). "Nuclear NF-κB expression correlates with outcome among patients with head and neck squamous cell carcinoma treated with primary chemoradiation therapy". International Journal of Radiation Oncology, Biology, Physics. 86 (4): 785–90. doi:10.1016/j.ijrobp.2013.04.001. PMID 23664323.

Gionet N, Jansson D, Mader S, Pratt MA (Jun 2009). "NF-kappaB and estrogen receptor alpha interactions: Differential function in estrogen receptor-negative and -positive hormone-independent breast cancer cells". Journal of Cellular Biochemistry. 107 (3): 448–59. doi:10.1002/jcb.22141. PMID 19350539. S2CID 24756428.

Gilmore TD, Gapuzan M-E, Kalaitzidis D and Starczynowski D. (2002). Cancer Lett., 181, 1–9.

Karin M, Cao Y, Greten FR and Li ZW. (2002). Nat. Rev. Cancer, 2, 301–310.

Barkett M and Gilmore TD. (1999). Oncogene, 18, 6910–6924

Starczynowski DT, Reynolds JG and Gilmore TD. (2003). Oncogene, 22, 6928–6936.

Carrasco D, Rizzo CA, Dorfman K and Bravo R. (1996). EMBO J., 15, 3640–3650.

Kabrun N, Bumstead N, Hayman MJ and Enrietto PJ. (1990). Mol. Cell. Biol., 10, 4788–4794.

Barth TF, Bentz M, Leithauser F, Stilgenbauer S, Siebert R, Schlotter M, Schlenk RF, Do¨hner H and Mo¨ller P. (2001). Genes Chromosomes Cancer, 31, 316–325.

Guo F, Tänzer S, Busslinger M and Weih F: Lack of nuclear factor-kappa B2/p100 causes a RelB-dependent block in early B lymphopoiesis. Blood. 112:551–559. 2008.

Bellet MM, Zocchi L and Sassone-Corsi P: The RelB subunit of NFκB acts as a negative regulator of circadian gene expression. Cell Cycle. 11:3304–3311. 2012.

McMillan DH, Baglole CJ, Thatcher TH, Maggirwar S, Sime PJ and Phipps RP: Lung-targeted overexpression of the NF-κB member RelB inhibits cigarette smoke-induced inflammation. Am J Pathol. 179:125–133. 2011.

Zhu L, Zhu B, Yang L, Zhao X, Jiang H and Ma F: RelB regulates Bcl-xl expression and the irradiation-induced apoptosis of murine prostate cancer cells. Biomed Rep. 2:354–358. 2014.

Xu Y, Josson S, Fang F, Oberley TD, St Clair DK, Wan XS, Sun Y, Bakthavatchalu V, Muthuswamy A and St Clair WH: RelB enhances prostate cancer growth: Implications for the role of the nuclear factor-kappaB alternative pathway in tumorigenicity. Cancer Res. 69:3267–3271. 2009.

Mineva ND, Wang X, Yang S, Ying H, Xiao ZX, Holick MF and Sonenshein GE: Inhibition of RelB by 1,25-dihydroxyvitamin D3 promotes sensitivity of breast cancer cells to radiation. J Cell Physiol. 220:593–599. 2009.

Xu J, Zhou P, Sun A and Guo F: Effect of nuclear transcription factor RelB on the proteasome inhibitor-sensitivity of chronic lymphocytic leukemia cells. Zhonghua Xue Ye Xue Za Zhi. 35:524–527. 2014.(In Chinese).

Didonato JA, Mercurio F & Karin M (2012) NF-jB and the link between inflammation and cancer. Immunol Rev 246, 379–400

Wilson CL, Jurk D, Fullard N, Banks P, Page A, Luli S, Elsharkawy AM, Gieling RG, Chakraborty JB, Fox C et al. (2015) NFkB1 is a suppressor of neutrophildriven hepatocellular carcinoma. Nat Commun 6, 6818.

Voce DJ, Schmitt AM, Uppal A, McNerney ME, Bernal GM, Cahill KE, Wahlstrom JS, Nassiri A, Yu X, Crawley CD et al. (2014) Nfkb1 is a haploinsufficient DNA damage-specific tumor suppressor. Oncogene 34, 2807–2813.

Southern SL, Collard TJ, Urban BC, Skeen VR, Smartt HJ, Hague A, Oakley F, Townsend PA, Perkins ND, Paraskeva C et al. (2012) T. Cartwright et al. The NF-jB subunit NFKB1 interacts with the p50–p50 homodimeric NF-jB complex: implications for colorectal carcinogenesis. Oncogene 31, 2761–2772.

Neri A, Chang CC, Lombardi L, Salina M, Corradini P, Maiolo AT, Chaganti RSK and Dalla-Favera R. (1991). Cell, 67, 1075–1087.

Schmid RM, Perkins ND, Duckett CS, Andrews PC and Nabel GJ. (1991). Nature, 352, 733–736.

Dimitrakopoulos, F. I. D. et al. NSCLC and the alternative pathway of NF-κB: uncovering an unknown relation. Virchows Arch. 460, 515–523 (2012).

Cogswell, P. C., Guttridge, D. C., Funkhouser, W. K. & Baldwin, A. S. Selective activation of NF-κB subunits in human breast cancer: potential roles for NF-κB2/p52 and for Bcl-3. Oncogene 19, 1123–1131 (2000).

Lessard, L., Bégin, L. R., Gleave, M. E., Mes-Masson, A.-M. & Saad, F. Nuclear localisation of nuclear factor-kappaB transcription factors in prostate cancer: an immunohistochemical study. Br. J. Cancer 93, 1019–1023 (2005).

Seo, S. I. et al. Immunohistochemical analysis of NF-κB signaling proteins IKKε, p50/p105, p52/p100 and RelA in prostate cancers. APMIS 117, 623–628 (2009).

Wharry, C. E., Haines, K. M., Carroll, R. G. & May, M. J. Constitutive non-canonical NFκB signaling in pancreatic cancer cells. Cancer Biol. Ther. 8, 1567–1576 (2009).

Downloads

Published

13-08-2024

How to Cite

Aayush. (2024). Advancements in biomimetic nanomaterials in the activation of NFκb receptors in cancer. Malaysian NANO-An International Journal, 4(1), 1–23. https://doi.org/10.22452/mnij.vol4no1.1