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ABSTRACT When the assumptions of normality and homoscedasticity are met, researchers should 

have no doubt in using classical test such as t-test, to test for the equality of central tendency measures for 

two groups. However, in real life this perfect situation is rarely encountered. When the problem of 

nonnormality and variance heterogeneity simultaneously arise, rates of Type I error are usually inflated 

resulting in spurious rejection of null hypotheses. In addition, the classical least squares estimators can be 

highly inefficient when assumptions of normality are not fulfilled. The effect of non-normality on the 

trimmed F statistic was demonstrated in this study. We propose the modifications of the trimmed F statistic 

mentioned by using (1) a priori determined 15% symmetric trimming and (2) empirically determined 

trimming using robust scale estimators such as MADn, Tn and LMSn. The later trimming method will trim 

extreme values without prior trimming percentage. Based on the rates of Type I error, the procedures were 

then compared. Data from g- and h- distributions were considered in this study. We found the trimmed F 

statistic using robust scale estimator LMSn as trimming criterion provided good control of Type I error 

compared to the other methods. 

 

ABSTRAK Apabila andaian normal dan homokedastik dipenuhi, penyelidik tidak perlu ragu untuk 

menggunakan ujian klasik seperti ujian-t bagi menguji kesamaan sukatan kecenderungan memusat untuk 

dua kumpulan. Walau bagaimanapun, dalam kehidupan sebenar situasi yang sempurna ini jarang dijumpai. 

Apabila masalah ketaknormalan dan varians heterogen berlaku serentak, ini akan memberi kesan kepada 

kadar ralat Jenis I dan seterusnya menyebabkan berlakunya penolakan terhadap hipotesis nol. Di samping 

itu, penganggar kuasa dua terkecil boleh menjadi sangat tidak cekap apabila andaian kenormalan tidak 

dipenuhi. Kesan ketidaknormalan pada statistik F terpangkas telah dibuktikan dalam kajian ini. Kami 

mencadangkan pengubahsuaian statistik F terpangkas menggunakan (1) penentuan awal 15% pemangkasan 

secara simetri dan (2) pemangkasan secara empirikal menggunakan penganggar skala teguh seperti MADn, 

Tn dan LMSn. Kaedah pemangkasan yang terkemudian, akan memangkas nilai ekstrem tanpa penentuan 

awal peratusan pemangkasan. Berdasarkan kadar ralat Jenis I, prosedur-prosedur ini dibandingkan. Data 

dari taburan g- dan h- dipertimbangkan dalam kajian ini. Kami mendapati statistik F terpangkas 

menggunakan penganggar skala kukuh LMSn sebagai kriteria pemangkasan mempunyai kawalan ralat Jenis 

I yang baik berbanding dengan kaedah lain. 
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INTRODUCTION 

 

In recent years, numerous methods were being 

studied in terms of finding better methods for 

controlling the rates of Type I error in the one-way 

independent group designs [1, 2, and 3]. Through a 

combination of theoretical developments, more 

flexible statistical methods, and faster computers, 

serious practical problems that seemed 

insurmountable only a few years ago can now be 

addressed. One way to overcome the problems with 

controlling Type I error rates is by using robust 

statistics. 

 

There were several definitions of robust statistics 

readily found in the literature and these unfortunately 

led to the inconsistency of its meaning. Most of the 

definitions were based on the objective of the 

particular study by different researchers [4]. When 

one is searching for a procedure which cannot be 

influenced by the deviations from assumptions while 

conducting hypothesis testing, a robust statistics 

based method provided an alternative to the classical 

method. [4] gave a definition for robustness as a 

situation which is not sensitive to small changes in 

assumptions. While [5] in his study reported that a 
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robust procedure is a procedure that was affected 

only slightly by appreciable departures from 

assumptions. Regardless of the definition provided, 

robust method in general offers substantial 

improvement over classical method [6 and 7]. Robust 

statistics have been used in statistical problems for 

the past 40 years. However, specific robust statistics 

based research on one-way ANOVA began two 

decades ago [8, 9 and 10]. 

  

In a non-normal model, classical least squares 

estimators could be highly inefficient. By substituting 

robust measures of location and scale such as 

trimmed means and Winsorized variances in place of 

the usual means and variances respectively, tests that 

were insensitive to the combined effects of non-

normality and variance heterogeneity could be 

obtained [11]. Trimmed mean is a good measure of 

location because the standard error of the trimmed 

mean is less affected by departures from normality. 

This is due to the fact that the extreme values or 

outliers are removed [11]. According to [12], 

Winsorized variance is a consistent estimator of the 

variance of the corresponding trimmed mean. The 

trimmed mean and Winsorized variance are 

intuitively appealing because of their computational 

simplicity and good theoretical properties [13]. 

 

Trimming can also be very beneficial in terms of 

efficiency and achieving high power. According to 

literature, the optimal amount of trimming is between 

0 and 0.25. A good value would be 0.20 [3]. When 

using 20% trimming, we can expect more accurate 

probability coverage of confident interval regarding 

differences between means when distributions are 

skewed [14]. In [7], it is stated that the more we trim, 

the less effect skewness had on these probability 

coverage. However when n is small, the optimal 

amount of trimming is yet to be determined. While 

[15] in their paper concluded that the best results are 

obtained with 20% to 25% symmetric trimming. [2] 

found that one can achieve a slightly better Type I 

error control with a 15% symmetric trimming than 

with a 20% symmetric trimming. [16] demonstrated 

that a good control of Type I error can be achieved 

with only modest amounts of trimming, namely 15% 

or 10% from each tail of the distribution. To 

empirically determine the amount of trimming was 

difficult, and not always obvious.  

 

METHODS 

 

This paper focuses on the trimmed F statistic 

methods with 15% symmetric trimming and several 

trimming criteria using robust scale estimators MADn, 

Tn and LMSn. These four methods were compared in 

terms of Type I error under conditions of normality 

and non-normality which will be represented by 

skewed g- and h- distributions. 

 

Trimmed F statistic 

 

Let X1, X2,..., Xn be an ordered sample of size n and 

let k = [gn]+1 where [x] is the largest integer   x. 

The g-trimmed mean of the sample is defined as,  
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Trimming criterion 

 

The trimmed mean was calculated by using: 













2

1

21

1
)()(

1 in

ii
ji

iij

jt

j

X
n

X      



Malaysian Journal of Science 32 (1): 73-77 (2013) 

 

75 

 

where  

i1      =      number of observations Xij such that  








 


jij
MX  < -2.24 (scale estimator) 

i2 = number of observations Xij such that 








 


jij
MX > 2.24 (scale estimator) 

To arrive at the Ft(g) statistic for these methods, the 

g-Winsorized mean is given by, 
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Robust scale estimators 

 

Scale measure is a quantity that explains the 

dispersion of a distribution. The value of a 

breakdown point is a main factor to be considered 

when looking for a scale estimator [17]. [18] have 

introduced several scale estimators by considering 

their breakdown point.   

 

MADn, Tn and LMSn are three robust scale estimators 

used in this study. These estimators have 0.5 

breakdown value and also have bounded influence 

functions. These estimators were chosen because of 

their simplicity and computational ease. 

 

MADn 

 

MADn is the median absolute deviation about the 

median. It has the best possible breakdown value and 

its influence function is bounded with the sharpest 

possible bound among all scale estimators [18]. 

There are also some drawbacks about this scale 

estimator. The efficiency of MADn is very low with 

only 37% at Gaussian distribution. MADn takes a 

symmetric view on dispersion and also does not seem 

to be a natural approach for asymmetric distributions. 

This robust scale estimator is given by 

  MADn = b medi |xi – medjxj| 

where the constant b is needed to make the estimator 

consistent for the parameter of interest. 

 

Tn 

Another scale estimator proposed by [18] is Tn, which 

has highest breakdown point like MADn. The scale 

estimator is given as 
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h . Tn was proven to have 50% 

breakdown point and an efficiency of 52%. It is more 

efficient than MADn. 

LMSn 

LMSn is also a scale estimator with a 50% breakdown 

point which is based on the length of the shortest half 

sample as shown below: 
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where )()2()1( .... nxxx  are the ordered data. 

The default value of c’ is 0.7413 which achieves 

consistency at Gaussian distributions. 

 

EMPIRICAL INVESTIGATION 

 

This paper focused on a balanced completely 

randomized design containing two and four groups 

with small samples. We have chosen two population 

sizes, N = 30 and N = 40. For N = 30, the samples are 

set at n1 = 15 and n2 = 15 while for N = 40, the setting 

is n1 = 20 and n2 = 20. For both sizes we used 

homogeneous variances at 1:1. For four groups, we 

set the samples at n1 = 15, n2 = 15, n3 = 15 and n4 = 

15 for N = 60 and for N = 80, we set the samples at n1 

= 20, n2 = 20, n3 = 20 and n4 = 20. Each method was 

tested under three types of distributions with g = 0.0 

and h = 0.0 (normal), g = 0.5 and h = 0.0 (skewed 

normal tailed) and g = 0.5 and h = 0.5 (skewed 

leptokurtic). For each of the designs, 5000 datasets 

were simulated. The random samples were drawn 

using SAS generator RANNOR [19]. 

 

Table 1 Design specifications for balanced design.  

 

N Group sizes Group variances 

 1 2 1 2 

30 15 15 1 1 

40 20 20 1 1 
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Table 2  Design specifications for unbalanced design. 

 

N Group sizes Group variances 

 1 2 1 2 

30 12 18 1 1 

40 15 25 1 1 

 

 

RESULTS AND CONCLUSION 

 

The results for Type I error for the methods 

investigated were shown in Table 3 and Table 4. 

Based on Bradley’s liberal criterion of robustness 

[20], a test can be considered robust if rate of Type I 

error, is within the interval 5.0 and 5.1 . For the 

nominal level  = 0.05, the Type I error rate should 

be between 0.025 and 0.075. 

 

Table 3 and Table 4 display the empirical Type I 

error rates for all the procedures across the three 

distributions under balanced and unbalanced designs. 

Values that fall within the Bradley’s liberal criterion 

of robustness were highlighted, and the average 

values that satisfy the criterion were underlined.   

 

Table 3 displays the empirical Type I error rates for 

all the procedures across the three distributions.  

Values that fall within the Bradley’s criterion were 

highlighted, and the average values that satisfy the 

criterion were underlined.   

 

Across the distributions, all the values for 15% 

symmetric trimming are robust. However for extreme 

case, g = 0.5 and h = 0.5, trimming criterion using 

MADn and Tn works better than 15% symmetric 

trimming. On the average, trimmed F statistic with 

trimming criterion using robust scale estimator, LMSn 

perform better in controlling Type I error rate as 

compared to all the other methods for smaller group 

size (N = 30). .While for larger group size (N = 40), 

15% symmetric trimming seem to have better control 

of Type I error rates. From this finding, we would 

like to suggest using this method as the alternative to 

the traditional methods especially when the sample 

size is small.  For extreme cases, trimmed F statistic 

with robust estimators MADn and Tn are 

recommended regardless of group size.                       

 

 

Table 3   Empirical Type I Error Rates (balanced design). 

 

Distributions Trimmed F statistic with robust scale 

estimator, N = 30 (15, 15) 

Trimmed F statistic with robust scale 

estimator, N = 40 (20, 20) 

 MADn Tn LMSn 


(15%) MADn Tn LMSn 


(15%) 

g=0.0 h=0.0 0.0912 0.0886 0.0628 0.0456 0.0956 0.0858 0.0614 0.0532 

g=0.5 h=0.0 0.1080 0.1050 0.0428 0.0426 0.1172 0.1164 0.0472 0.0506 

g=0.5 h=0.5 0.0462 0.0462 0.0200 0.0314 0.0472 0.0438 0.0240 0.0408 

Average 0.0818 0.0799 0.0419 0.0399 0.0867 0.0820 0.0442 0.0482 

 

Table 4  Empirical Type I Error Rates (unbalanced design). 

 

Distributions Trimmed F statistic with robust scale 

estimator, N = 30 (12,18) 

Trimmed F statistic with robust scale 

estimator, N = 40 (15,25) 

 MADn Tn LMSn 


(15%) MADn Tn LMSn 


(15%) 

g=0.0 h=0.0 0.0912 0.0810 0.1134 0.0474 0.0914 0.0834 0.1242 0.0488 

g=0.5 h=0.0 0.1078 0.1060 0.1252 0.0450 0.1162 0.1124 0.1286 0.0484 

g=0.5 h=0.5 0.0518 0.0474 0.0510 0.0370 0.0492 0.0454 0.0520 0.0404 

Average 0.0836 0.0781 0.0965 0.0431 0.0856 0.0804 0.1016 0.0459 
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