
Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

99

Malaysian Journal of Computer Science. Vol. 30(2), 2017

TOWARDS MEASURING SOFTWARE REQUIREMENTS VOLATILITY: A
RETROSPECTIVE ANALYSIS

Shouki A. Ebad1

1Faculty of Computing & Information Technology,
Northern Border University,

Saudi Arabia

Email: shouki.abbad@nbu.edu.sa1

ABSTRACT

Requirement management (RM) is a fundamental activity in requirements engineering. It keeps track of all the
requirements changes that would cause errors or resulted in software delays or cost overruns. When
requirements have many changes over time, they have a tendency to be highly volatile. This volatility depends
on several factors such as organizational complexity, process maturity of the company, and development phase.
Managing the requirements quantitatively by metrics is a good way to understand whether RM is efficient or
not. In this paper, we propose a new metric to measure the requirements volatility of object-oriented systems in
terms of use cases; we use retrospective analysis that examines the amount of change applied in successive
versions of a software product. We theoretically validated our metric through a set of prominent mathematical
properties. We also empirically validated our metrics using three versions of an open source project,
JHotDraw. Measurements of the metric were shown to be consistent with previous measurements of the
JHotDraw versions conducted at the architecture design level. The study results in a foundation for further
empirical retrospective studies of the requirements properties.

Keywords: requirements engineering, requirements volatility, requirements management, software
metrics, use cases, software evolution.

1.0 INTRODUCTION

Software requirements describe the services provided by the system and its operational constraints [1][2]. These
requirements reflect the needs of system stakeholders (including paying customers, users and developers). The
process of finding out, analyzing, documenting, and checking these services and constraints is called
requirements engineering (RE) [1][2][3][4]. This process deals with specific requirements activities, elicitation,
analysis, specification, communication, validation and evolving of the requirements [2][5][6]. RE is a critical
stage of the software process as errors at this stage inevitably lead to problems later in the system design and
implementation; the cost of fixing these errors in initial stages is lower than fixing them in the later stages of
software development [1][2][4][7]. Many of these errors are caused by changes in the requirements.
Requirements are subject to change to reflect changing stakeholders’ needs or changing environment, business
plans, and laws [5][8][9][10]. Successful software systems evolve as the environment in which these systems
operate changes and stakeholder requirements change [6]. Thus, changes to requirements documentation need to
be managed; the process that keeps track of all requirements changes and configurations is called requirements
management (RM) [2][3][11]. It is clear that RM is a fundamental activity in RE. However, it has become a
challenge because requirements change has been reported as one of the main factors affecting the project delays
or project cost overruns, if not causing complete failure [5]][9][12][13][14][15].

Typical changes to requirements include, adding, deleting or modifying requirements, and fixing errors [16][17].
When requirements have many changes over time, they tend to be highly volatile [18][11]. From an evolution
perspective, volatile requirements are likely to change after the system has been become operational or during
the system development process. An example, is the requirements resulting from government healthcare policies
[2]. These requirements must evolve to reflect the changed view of the system in development. Furthermore, the

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

100

Malaysian Journal of Computer Science. Vol. 30(2), 2017

volatility on requirements depends on several factors. For instance, one might be organizational complexity, the
process maturity of the company, the phase of the life cycle, the volatility of the market and so on
[1][3][18][19]. As a result of an increased number of interacting components, the more complex the system or
product developed becomes, the higher is the volatility [11]. In many cases, requirements changes might
produce conflicts, which can be interpreted as changes and errors that need measurement. Measures give a status
of the software project to the development team, which increases the probability of producing a satisfactory
result in the end product [1][2][11]. Thus, managing the requirements quantitatively by metrics is a good way.
We can understand whether requirements management is efficient from the requirements metrics result [10].

Although the object-oriented (OO) paradigm has grown in influence and use over the last few years, most of the
OO measures extensively focused on internal source code attributes such as size, cost prediction, cohesion,
coupling and structure [20]. Other attributes, like those related to the product requirements, have not received
much needed attention. To the best of our knowledge, there is no metric defined in terms of use cases (UCs),
which were first introduced by Jacobson [20]. UCs are a scenario-based technique for requirements elicitation;
they describe how a user interacts with the system by defining the steps required to accomplish a specific goal.
The set of UCs represents all of the possible interactions to be represented in the system requirements [2][20].
They have now become a fundamental feature for describing OO systems models. Herein, UCs can be used to
measure the requirements volatility during RM activity. According to Jacobson [20], the functionality (i.e.
services) that users require of the system is documented in UCs. The objective of this research is to propose a
new metric to measure the requirements volatility of OO systems in terms of UCs that considers more factors
than what have been used in the existing measures. To evaluate requirements volatility and provide information
about the requirements and its evolution, enabling the monitoring of trends in software evolution, retrospective
analysis is used by examining the amount of change applied in successive versions of a software product.
Compared to the existing volatility metrics, our metric is validated theoretically against theoretical properties
and empirically using an open source project. The rest of this paper is organized as follows. Section 2 presents a
review of existing requirements volatility measures. Section 3 describes the retrospective analysis compared
with the predictive one. Section 4 introduces our new metric for measuring requirements volatility. The
validation of the proposed metric against theoretical properties is discussed in Section 5. Section 6 discusses the
empirical validation and the application to a real-world case study. Section 7 presents possible threats to the
validity of this study. Finally, Section 8 summarizes the paper and gives plans for future work.

2.0 LITERATURE REVIEW

This section presents, in chronological order, a review of the research works that have been done in the area of
measuring software requirements volatility. Sherif [[16]] proposed a risk management metric that deals with the
stability of requirements throughout phases of software development. By example, the metric gave the
incremental risk for every development phase and also the total cumulative risk as the project progresses from
phase to phase. Malaiya and Denton [7] analyzed the influence of changes in a program when testing has been
initiated. They examined the effect of replacing a component with another component of the same size, as well
as general cases when software is added, deleted, and modified. All the results show that changes have a greater
impact on defect density when they occur closer to the end of the testing effort (i.e. close to the version date).
Wang and Lai [10] discussed the method of requirements management for the increment development model,
the goal of the management and the structure of data collection. They also presented a metric to measure the
stability of requirements; the metric depends on the statistical process control (SPC) technique often used in
monitoring, controlling and improving process stability [22]. Nurmuliai et al. [9] presented a qualitative method
to characterize and evaluate the requirements change problems throughout the system development process.
They also developed a taxonomy to classify requirements change and the causes of these changes. Their
findings revealed that the main causes of requirements volatility were changes in customer needs (or market
demands), developers’ increased understanding of the products, and changes in the organization policy. They
discovered that the rate of requirements volatility was high at the time of requirements specification completion
and while functional specification reviews were conducted. Selby [23] investigated the principles for
measurement-driven dashboards for development and management of large-scale projects. He focused on
software requirements metrics from such dashboards where the number of requirements was defined to be the
number of “shall” statements in the requirements specification documents. Loconsole and Börstler [13]
quantified requirements volatility through changes to the UC models in a case study in the automotive industry.

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

101

Malaysian Journal of Computer Science. Vol. 30(2), 2017

In that research, changes were measured as changes to the UC diagram. Their paper is based on a single project
comprising fourteen UCs; this led the authors to consider their results as preliminary. The goal of the study in
Ali [[1]] was to analyze requirements metrics that measure traceability, completeness, volatility, and size. He
also studied the existing automated requirements tools, including Automated Requirements Measurement Tool –
ARM, IBM Rational Requisite Pro, Dynamic Object Oriented Requirements System, and Requirements Use
Case Tool. Kulk and Verhoef [24] proposed a mathematical model to identify the requirements volatility danger
zone of IT projects. With that model, it is possible to calculate a project’s tolerance for volatility based on size
estimates at different moments in time and the duration between them. They also derived two volatility ratios
from this model to express how close the volatility of a project has approached the danger zone when
requirements volatility reaches a critical failure rate. Hou [11], proposed a set of RM metrics, but he
implemented three because of the time factor, requirements growth (size) that indicates the amount of
requirements, requirements acceptance that indicates the acceptance degree by measuring review results as
projects are running, and requirements volatility, which means the rate of change of requirements. Besides, they
did not validate the metrics theoretically; they only employed the model presented by Canfora and Cerulo [37]
to present the metrics proposed. Markopoulos et al. [25] introduced a new project management model based on
requirements management tracking using a set of metrics that analyze the requirements evolutional behavior
against weighted project implementation phases, weighted project functionality, and weighted project goals and
expectations. This weighted requirement based project tracking process is supported by a project tracking
analysis model combining a number of metrics that result in the identification of a single volume indicating the
progress of the project. The work [14] aimed to evaluate impacts to the systems engineering effort, measured in
terms of labor hours, by investigating the causes and effects of requirements volatility in large-scale systems
using an extension to COSYSMO (Constructive Systems Engineering Cost Model), a generally-available
parametric systems engineering cost model. Obana and Hanakawa [26], proposed a new metric for meeting
quality on a software requirement analysis phase. Their original basic idea was “high quality meetings lead high
quality software requirements”. A feature of the metric is to measure when and who speaks at meetings.
Contexts of speaking at meetings are not a target of the metric. As a result, the authors automatically extracted
vague discussion and suspicious discussion in quantitative analysis using the metric. However, if topics did not
appear in meetings, software faults using the metric cannot be predicted. Peña and Valerdi [19] discussed a
number of factors (technical, organizational and contextual) that could lead to requirements volatility being
identified, ranked, and depicted in a causal model diagram. Besides, survey results and workshop discussions
resulted in a set of observations regarding the expected level and impact of requirements volatility across the
system life cycle. Abd Elwahab et al. [18] described several aspects of requirements volatility including causes,
measurements, and impact of requirement volatility on software life cycle development. To manage
requirements volatility, they proposed a framework that contains four major phases (elicitation and analysis,
specifications validation, requirements volatility and change management).

In conclusion, our literature survey reveals that the existing requirements volatility measures and evaluation
approaches have some limitations. For instance, metrics proposed by Selby [23] oversimplifies the requirements
as it is based on counting the number of “shall” statements. The methods used in works by Kulk and Verhoef
[24] and Qazi et al. [14] are not simple; they are based on size estimates, project cost and duration, and financial
background. In Loconsole and Börstler [13], some exiting measures related to the requirements volatility were
applied on a very small-sized project comprising a few UCs. The used measures were not related to
requirements artifacts like changes in source lines of code (SLOC), change error, change effort and so on. The
metric of Hou was applied to meet the goals of the Volvo Group. The source code artifacts (not requirements
artifacts) played an important role in other studies, Kulk and Verhoef [24] and Loconsole and Börstler [13].
Obana and Hanakawa are closer to the time management technique than requirements metric. Also, some
observations with regard to the validity of the proposed volatility metrics were revealed. Although the definition
of valid measures requires that they be theoretically validated [18][28], the designers of the metrics proposed in
all surveyed works did not validate their proposed metrics against theoretical or mathematical properties and
few of them validated their metrics empirically. To address the above issues, we use retrospective analysis to
develop a new metric to measure the requirements volatility based on UCs. We theoretically validated our
metric against applicable theoretical properties and experimentally against a real-world open source system;
each system version has tens of UCs.

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

102

Malaysian Journal of Computer Science. Vol. 30(2), 2017

3.0 RETROSPECTIVE ANALYSIS

From a software evolution perspective, artifacts (e.g., requirements documents, architecture models, design
diagrams, source code, etc.) can be evaluated by using either predictive analysis or retrospective analysis [27].
Predictive analysis tries to anticipate how well a system artifact (in our case, requirements) will perform in the
future. It provides prediction of the target property and not the actual value. Such an analysis is useful because it
helps save cost and time by concentrating on the key aspects of the user and systems requirements in advance.
However, performing this analysis is not easy because the possible changes that will be made to the system’s
requirements are not known beforehand. Retrospective approach looks at successive versions of the system
artifact to analyze how smoothly the evolution took place. Intuitively, our goal is to see if the system’s
requirements remained intact throughout the evolution of the system, that is, through successive versions of the
software. We call this intuitive idea “requirements stability”. Usually, the approach relies on comparing
properties from one version of the system to the next. This implies that some requirements information must be
kept for each version. For example, we might compare the “shall” statement in successive versions. If such
statements remain substantially unchanged, we can conclude that it was stable requirements that supported
evolution well. The general advantages of this analysis including (1) to evaluate the requirements volatility
empirically, (2) to calibrate the outcomes of predictive analysis and (3) to predict trends in the system’s
evolution. Such predictions can be valuable for planning the future development of the system. As an example, a
software project manager may use previous evolution data for anticipation of the resources needed for the next
version of the system, identification of the components most likely to require attention, identification of the
components needing replacement, or deciding if it is time to retire the system entirely.

4.0 MEASURING REQUIREMENTS VOLATILITY

In this section, we first identify types of change that affect requirements volatility, and based on these types, we
then propose a requirements volatility metric.

4.1 Identification of Volatility Aspects

According to Sherif [16] and Stark et al. [17], the change types on requirements are three:
1. Requirement addition: adding a requirement to make up for the omission or meet the customer’s

requirement.
2. Requirement deletion: deleting or removing existing requirements from the business strategy or the

requirements redundancy.
3. Requirement modification: modifying requirement owing to technical restriction or design improvement.

In fact, a requirements volatility problem appears when any of the above types occur after the basic set has been
agreed to by both clients and developers. An accurate measurement is useful for preventive and controlling
requirements volatility [12]. To this end, we propose a new metric to measure the volatility in terms of UCs of
the system. UCs are more suitable to be used in capturing the software requirements than using other techniques
such as counting “shall” statements as in some previous works. UCs can be seen as one way of specifying the
services that users require of the OO system [[20]]. Moreover, they are highly accepted in industry. In this
research, the number of requirements is defined to be the number of UCs in the requirements specification
documents, i.e. each UC would count as one requirement. In this context, there are three types of change that
can be observed on UCs when two versions of the same software are compared:

1. New: A UC that did not exist in version i has been added to version i + 1.
2. Removed: A UC that exists in version i has been removed in version i + 1.
3. Modified: A UC that exists in version i has been modified in version i + 1.

As our aim is to measure the requirements volatility, such a measure would depend on the changed types and
find volatility by counting the changed UCs between version i + 1 and version i. We consider the requirements
of subsequent version (version i + 1) completely volatile if all of its UCs have been changed and completely

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

103

Malaysian Journal of Computer Science. Vol. 30(2), 2017

non-volatile if none of its UCs has been changed with respect to version i. The extent of volatility of the
subsequent version is then the percentage of changed UCs to the total UCs.

The impact of requirements volatility varies depending on the type of change [18][19]. Sherif reported that the
modification type of change is the least risky with the least effort especially with mission critical requirements
[16]. Stark et al. also reported the modification type is the least common form of changes in requirements
compared with additions and deletions [17]. Accordingly, our study focused on the most relevant information,
i.e. the deletion and addition types, besides the original ones. A UC is original if it exists in version i.

4.2 Calculation of Requirements Volatility

Retrospective analysis is primarily concerned with the study of successive system versions itself [19][28] It is a
quantitative measure that can be used to study the requirements evolution and, in turn, the software evolution.
Consider two software versions v1 and v2 with two sets of UCs: UC1 and UC2, Let N be the number new UCs in
v2, R be the number of removed UCs from v1 and O be the number of initial UCs that exist in v1. Therefore, N +
R represents the number of changed requirements (i.e. UCs) while O + N + R represents the total number of
requirements (UCs). As R is included in O, then O + N + R could be simplified as O + N. We define
requirements volatility between v1 and v2, RV(vi, vi+1), as the amount of changes to UCs with respect to vi and
vi+1. Operationally, RV (vi, vi+1) is then calculated as in Eq. (1):

𝑉𝑅(𝑣 , 𝑣ାଵ) =
𝑁 + 𝑅

𝑁 + 𝑂
 (1)

Where O > 0, R ≥ 0, N ≥ 0, R ≤ O.

The RV value varies from 0 to 1 where RV value of 0 indicates the lowest possible amount of change between vi
and vi+1 (i.e. volatile requirements) and RV value of 1 indicates the highest possible amount of change between
vi and vi+1 (i.e. non-volatile requirements). As an example, consider two software versions v1 and v2 with three
UCs in v1 (UC1, UC2 and UC3) and four UCs in v2 (UC1, UC2, UC4 and UC5). In this case, O = 3 (i.e., UC1, UC2,
and UC3), R = 1 (i.e., UC3), and N = 2 (i.e., UC4 and UC5). The requirements volatility between v1 and v2, RV(v1,
v2), is (2+1)/(3+2) = 0.6.

5.0 THEORETICAL VALIDATION

To date, no research looks at the mathematical properties required to theoretically validate the requirements
volatility metrics. Therefore, we validate our metric using four cohesion properties proposed by Briand et al.
[28][29]. Because these properties were general, they are applied to validate several types of software metrics
such as software packaging and architectural stability so that any well-defined metric should satisfy these
properties [28][29][30][31]. In his theoretical validation for stability metric at architecture level, Hassan [32]
added three more properties: transitivity, package cohesion impact and change impact. While our proposed
metric (Eq. 1) is not meant to be solely architecture stability metric nor cohesion, the rationale behind Briand
and Hassan’s properties is still applicable to our metric. The theoretical validation of RV based on these
properties (except the unrelated property, package cohesion impact) is as follows.

1. Non-Negativity

This property holds that the metric value is greater than or equal to zero. It is worth noting here that the non-
negativity attribute of software metrics (among other properties) is proposed in the literature and has been
widely adopted as a formal property to evaluate software metrics [33]. The RV metric possesses this property
because the variables used in it are the number of corresponding UCs, and such numbers cannot be negative.

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

104

Malaysian Journal of Computer Science. Vol. 30(2), 2017

2. Normalization

This property holds that the metric value belongs to a bounded interval. Normalization can generally provide
support for meaningful comparisons between the requirements volatility of different software versions as they
all belong to the same interval [28]. We opted to bind the measurements of RV to the interval [0, 1]. A “0”
means there has not been any requirements change from the UCs’ perspective across two versions. A “1” means
all UCs have changed across two versions. The RV value is bounded between 0 and 1 as the denominator in it is
always greater than or equal to the numerator; i.e. RV cannot be greater than 1 in value.

3. Null Value

This property holds that metric value is equal to zero if there is no change. RV metric has the null value when
there is no requirement removed from version i or added to version i+1. This is done formally when R + N = 0.

4. Maximum Value

This property holds that the metric value is Max if there is no a common requirement between version i and
version i+1. This property is satisfied with RV metric when both R and O are equal, i.e. all UCs in version i are
removed from version i+1.

5. Transitivity

Consider three metric measurements such that the first measurement is less than the second and the second is
less than the third, and then the first measure should be less than the third one. Version j is more volatile than i if
there is a greater number of removed or new UCs in j than in i. RV will always show that a software version
with a greater number of removed or new UCs has higher requirements volatility than a version with fewer
removed or new UCs. Let i, j, k and m represent four versions; RVj is the RV of j relative to its previous release
i, RVk the RV of k relative to its previous release j, and RVm is the RV of m relative to its previous release k. If
RVj < RVk and RVk < RVm, it implies that RVj < RVm, which means the summation of both R and N in k and m,
respectively, is more than those in i and j. Therefore, RV satisfies the transitivity property.

6. Change Impact

This property holds that if the number of changed UCs in release j relative to release i is less than that in release
k relative to release j, then the volatility of j relative to i will be less than the volatility of k relative to j provided
that the total UCs in j relative to i is not less than that in k relative to j. With RV metric, the number of changed
UCs is formally represented by the numerator value, i.e. R + N. Thus, if the numerator value of j is less than that
of k, then RV of j is higher than RV of k.

The above properties are theoretical concepts, so they don’t necessarily apply in requirements engineering. For
example, when RV actually reaches “maximum value”, then it is no longer a version; it is new software entirely.

6.0 EMPIRICAL VALIDATION

Because of the common problem in software engineering of the lack of empirical data early in the software life
cycle [34], we were not able to find relevant requirements artifacts where the RV metric could be applied. For
this reason, we have reverse-engineered source code of JHotDraw open source project as explained in the next
sections.

6.1 UC Extraction

According to Jacobson [20], the services of the system that user requires are documented in UCs. These UCs
describe the typical interactions between the users of a system and the system itself, providing a narrative of
how a system is used. Each UC is realized by one or more sequence diagrams (SDs) that depict how the objects

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

105

Malaysian Journal of Computer Science. Vol. 30(2), 2017

interact and work together to provide services [35]. Each individual object provides only a small element of the
functionality – its particular responsibilities – but when they work together, objects can produce services that
people can use. Even though there are some tools such as Enterprise Architect1, Together2 and AltovaUModel3
that can generate SDs from source code, the generated SDs are based on runtime behavior. In other words, when
one specifies a particular method, the runtime system can generate the behavior of this method across the entire
system. Source code of real software projects usually contains many statements representing the runtime
environment such as “for, while, if and, switch” statements. A transient task should, therefore, be taking place
after generating the SDs; it is a filtering process. Filtering is a means to eliminate all runtime variables and
messages shown in UML-SDs. It then makes the generated “runtime” SDs mimic the “functional” SDs that
describe the functional behavior of UCs through objects and messages starting from the pre-condition to the
post-condition. Data have been calculated using computerized tools, including AltovaUModel, XMI2UC and
Microsoft Excel, and are therefore reliable, except the outcomes of the filtering process (filtered SDs in Fig. 1)
because manual judgment was involved. Moreover, we have done filtering carefully to keep the filtering results
as valid and accurate as possible. The filtering step could then cause additional validity threats.

As we discussed in Section 3, the goal for RV is to be used in retrospective analysis of requirements.
Requirements are commonly documented using CASE tools because XMI (XML Metadata Interchange) is the
de-facto standard for storing artifacts by prominent CASE tools. As a result of data scarcity issues, we were not
able to find requirements artifacts available in the literature as we pointed out in the paper. Accordingly, we had
to reverse engineer the source code to XMI using AltovaUModel4 tool (Enterprise Edition Version 2012 sp1) in
generating the SDs from the system code. Because the SDs generated by AltovalUModel are runtime SDs, they
are filtered to reflect the functional behavior of UCs, as we have explained. We then use an XMI to UCs
transformation tool (XMI2UC) to extract UCs from OO source code via XMI documents generated by
AltovaUModel. While filtering is performed, the whole system is exported in XMI document to be used as input
to the XMI2UC tool. XMI2UC produces three outputs: (1) Package Information Document, (2) Class
Information Document and (3) UC Information Document. The first two documents list details of all OO
packages and classes, respectively. The UC in the third output is a sequence of related messages passing, i.e.
method callings. A detailed discussion on the XMI2UC tool and its use to generate UCs can be found in a
previous work [[36]]. Using this third document of any two different versions, we find all aspects related to the
volatility, i.e. original UCs of the first version, and new and removed UCs of the second version, and finally
calculate the RV value. Because the third document was in the text format, each UC sequence is put in one text
line, and we used Microsoft Word to compare among the considered documents to find the original, new and
removed UCs. The RV metric calculation of the obtained values related to RV metric was made using Microsoft
Excel. The above reverse engineering process could be modeled through the DFD (Data Flow Diagram) shown
in Fig. 1.

1 http://www.sparxsystems.com/products/ea/

2 http://www.borland.com/us/products/together/

3 http://www.altova.com/umodel.html/

4 http://www.altova.com/umodel.html/

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

106

Malaysian Journal of Computer Science. Vol. 30(2), 2017

Fig. 1: Modeling the reverse engineering process through DFD

6.2 JHotDraw Case Study

Using the above mentioned procedure of reverse engineering, we applied our proposed metric on a case study,
JHotDraw. This section presents the obtained results.

JHotDraw5 is an open source, two-dimensional graphics framework for structured drawing editors that are
written in Java. Because a wide amount of historical data of JHotDraw is available in its CVS repository, several
researchers used this system as a case study in their research [30][31][36][37][38][39]]. As a result of space
limitations, we list the required aspects of the first two versions of JHotDraw: 5.1 and 5.2 obtained by the UC
Information Document. In particular, UCs removed from version 5.1 and 5.2 (i.e. R values) and the new UCs
added to version 5.2 and 5.3 (i.e. N values) are available in Table A.1 through A.4 in Appendix. Fig. 2 shows
the statistics described in the previous section for the three versions of the JHotDraw project 5.1, 5.2 and 5.3. In
terms of RV, it is clear that version 5.3 is more volatile than version 5.2 with a difference of 22%.

Intuitively, the result above is expected because of adding new features in version 5.3, which in turn leads
directly to an increase in the value of RV metric. The undo functionality, for instance, is added to JHotDraw
system starting from version 5.3. According to Canfora and Cerulo [37], JHotDraw has more than 20 commands
that can be undone, causing the undo feature to be spread over many classes [37]. However, we did not find a
previous work to compare against our result except the experiment conducted by [31]. They proposed a metric
to measure the architecture stability of JHotDraw versions, in which their metric works on inter-package
connections (IPCs) level. They also found the amount of changes at the source code level using the
BeyondCompare tool6, i.e. in terms of SLOC. Both of the results, at architecture level, and at source code level,
were consistent with each other, so that stability value for version 5.2 is higher than that of version 5.3.
Consistently, our results, which are at requirements level, confirm the main finding of their experiments, which
indicates that the architecture of version 5.3 is less stable than that of version 5.2; RV metric can be viewed as
an indicator of how stable requirements are in the system.

5 www.JHotDraw.org

6 http://www.scootersoftware.com/

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

107

Malaysian Journal of Computer Science. Vol. 30(2), 2017

 Versions O R N RV Value

5.1 130 18 N/A N/A

5.2 131 29 19 (18+19)/(130+19) = 0.25

5.3 165 N/A 63 (29+63)/(131+63) = 0.47

Fig. 2: Requirements volatility of JHotDraw versions in terms of UCs

7.0 THREATS TO VALIDITY

As with any experimental study, there are some threats to the validity of the study's results. We conclude this
section by considering internal, construct and external threats [40]:

1. Threats to internal validity are influences that can affect the independent variable with respect to causality
without the researcher’s knowledge. Accordingly, the most important concern is the use of different tools
for data collection. This threat is not expected to be a serious concern because we used existing commercial
tools such as Altova. Although the other tool, XMI2UC, is developed for experimentation purposes only,
several previous studies relied on it, and we reported sufficient information about it. To remedy the problem
of data scarcity, we used both tools: Altova and XMI2UC to reverse engineer JHotDraw to identify UCs.
Another factor that may lead to internal threat is the selection of types of requirements change (new and
removed UCs), e.g. ignoring other change types such as UC modification. Although we ignore this type
because of its low risk, this type of change across different software versions remains to be investigated.

2. Threats to construct validity concerns generalizing the result of the experiment to the concept or theory
behind the experiment. In our study, part of the change we observed in the JHotDraw system could be
caused by bug fixes rather than requirement changes.

3. Threats to external validity are conditions that limit our ability to generalize the results of our experiment to
industrial practice. Accordingly, the JHotDraw case study does not show a size limitation for the study
because of its large size. However, we validate RV empirically by looking at a single system only,
JHotDraw, which is a threat to the external validity of our findings.

8.0 CONCLUSION AND FUTURE WORK

Volatile requirements tend to increase maintenance cost. Use cases (UCs) in OO systems could be used to
capture requirements. Therefore, it is important to measure volatile UCs to obtain stable requirements. In this
paper, we propose a requirements volatility (RV) metric to measure the volatility of the UCs. We validated RV
against theoretical properties and also experimentally using an open source project, three versions of JHotDraw.
Our results are a foundation for further empirical retrospective studies of the requirements properties.
Retrospective measurements can be helpful in improving the predictive measures. The results obtained from
these retrospective measurements can be studied against the predictive measurement, and the results can be used
to further optimize and fine-tune the predictive measurement techniques. Any of the predictive approaches can
be used for the purpose of relating a predictive approach with the retrospective approach. The goal would be to

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Version 5.2 Version 5.3

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

108

Malaysian Journal of Computer Science. Vol. 30(2), 2017

use such predictors early during the requirements management to predict the volatility of the requirements.
More work is required on empirical validation of RV metric using data from additional industrial projects.
Correlating requirements volatility with external quality attributes such as defect detection or maintainability
would also be investigated for more confidence on the metric validation.

REFERENCES

[1] M. Ali, “Metrics for Requirements Engineering”, MS Thesis, Department of Computing Science, Umeå
University, Umeå, Sweden, 2006.

[2] I. Sommerville, Software Engineering, 10th ed., Pearson, 2015. Chapter 4.

[3] A. Loconsole, “Definition and Validation of Requirements Management Measures”, PhD Thesis, Umeå
University, Umeå, Sweden, 2007.

[4] W. Lewis, Software Testing and Continuous Quality Improvement, 3rd ed., CRC Press, 2009.

[5] M. Christel, and K. Kang, “Issues in Requirements Elicitation”, Technical Report, Software Engineering
Institute, Sep 1992, No. CMU/SEI-92-TR-012, ESCTR-92-012.

[6] B. Nuseibeh, and S. Easterbrook, “Requirements Engineering: A Roadmap”, in Proceedings of The
Conference on The Future of Software Engineering, ACM Press, 2000, pp. 35-46.

[7] YK. Malaiya, and J. Denton, ”Requirements Volatility and Defect Density”, in Proceedings of the 10th
International Symposium on Software Reliability Engineering, Boca Raton, FL., 1-4 Nov 1998, pp. 285–
294.

[8] L. Li, He. Shuguang, Q. Er-shi, “On Software Requirement Metrics Based on Six-Sigma”, in Symposium on
Advanced Management of Information for Globalized Enterprises, Tianjin, 28-29 Sep 2008, pp. 1-3.

[9] N. Nurmuliani, D. Zowghi, and S. Fowell, “Analysis of Requirements Volatility during Software
Development Life Cycle”, in Proceedings of the 2004 Australian Software Engineering Conference
(ASWEC ’04), Melbourne, Australia, 13-16 Apr 2004, pp. 28-37.

[10] Q. Wang, and X. Lai, “Requirements Management for The Incremental Development Model”, in
Proceedings of the 2nd Asia-Pacific Conference on Quality Software, 10-11 Dec 2001, Hong Kong, pp. 295-
301.

[11] K. Hou, “Requirements Engineering and Management: A Development of A Requirements Management
Metrics Portal”, MS Thesis, Chalmers University of Technology, Göteborg, Sweden, 2009.

[12] D. Kavitha, and A. Sheshasaayee, “Requirements Volatility in Software Maintenance”, In Proceedings of
the 2nd International Conference on Computer Science and Information Technology (CCSIT), Bangalore,
India. 2-4 Jan 2012. In book: Advances in Computer Science and Information Technology. Computer
Science and Information Technology, pp.142-150.

[13] A. Loconsole, and J. Börstler, “An Industrial Case Study on Requirements Volatility Measures”, in
Proceedings of The 12th Asia-Pacific Software Engineering Conference, APSEC’05, IEEE CS Press (2005),
Taiwan, 15-17 Dec 2005, pp. 249–256.

[14] A. Qazi, K. B. S. Syed, R. G. Raj, E. Cambria, M. Tahir, D. Alghazzawi, “A concept-level approach
to the analysis of online review helpfulness”, Computers in Human Behavior, Vol. 58, May 2016,
PP. 75-81, ISSN 0747-5632, http://dx.doi.org/10.1016/j.chb.2015.12.028.

[15] A. Qazi, R. G. Raj, M. Tahir, M. Waheed, S. U. R. Khan, and A. Abraham, “A Preliminary Investigation of
User Perception and Behavioral Intention for Different Review Types: Customers and Designers
Perspective,” The Scientific World Journal, vol. 2014, Article ID 872929, 8 pages, 2014.
doi:10.1155/2014/872929.

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

109

Malaysian Journal of Computer Science. Vol. 30(2), 2017

[16] J. Sherif, “Metrics for Software Risk Management”, in Proceedings of WESCON/96, Anaheim, CA, USA,
22-24 Oct 1996, pp. 507-513.

[17] G. Stark, P. Oman, A. Skillicorn, R. Ameele, “An Examination of The Effects of Requirements Changes on
Software Maintenance Releases”, Journal of Software Maintenance Research and Practice, Vol. 11, No. 5,
1999, pp. 293–309.

[18] K. Abd Elwahab, M. Abd Elatif, S. Kholeif, “Identify and Manage The Software Requirements Volatility”,
International Journal of Advanced Computer Science and Applications (IJACSA), Vol. 7, No. 5, 2016, pp.
64-71.

[19] M. Peña, and R. Valerdi, “Characterizing The Impact of Requirements Volatility on Systems Engineering
Effort”, Systems Engineering, Vol. 18, No. 1, 2015, pp. 59-70.

[20] N. Fenton, and S. Pfleeger, Software Metrics: A Rigorous and Practical Approach. 3rd edition, CRC Press,
2014. Chapters: 7 and 8.

[21] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven Approach. 1st ed., Addison-
Wesley, 1992. Chapter 6 and 7.

[22] E. Weller, “Practical Applications of Statistical Process Control”, IEEE Software, Vol. 17, No. 3, 2000, pp.
48-55.

[23] R. Selby, “Measurement-Driven Dashboards Enable Leading Indicators for Requirements and Design of
Large-Scale Systems”, in Proceedings of The 11th International Software Metrics Symposium, Como, Italy,
19-22 Sep 2005.

[24] G. Kulk, and C. Verhoef, “Quantifying Requirements Volatility Effects”, Science of Computer
Programming, 72(3) : 136-175, 2008.

[25] E. Markopoulos, G. Alexopoulos, and N. Bouzoukou, J. Bilbao, “Software Project Tracking Metrics
Analysis Model Based on Project Requirements”, In Proceedings of The 11th WSEAS International
Conference on Mathematical Methods and Computational Techniques in Electrical Engineering
(MMACTEE '09), Athens, 2009, pp. 627-632.

[26] M. Obana, and N. Hanakawa, “Process Evaluation Based on Meeting Quality of Requirement Analysis
Phase in Software Development Projects”, Journal of Software Engineering and Applications, No. 7, No.
10, 2014, pp. 828-843.

[27] T. Mens, S. Demeyer, “Future Trends in Software Evolution Metrics”, in Proceedings of the 4th
International Workshop on Principles of Software Evolution (IWPSE ‘01), Vienna, Austria, 10-14 Sep
2001, pp. 83-86.

[28] L. Briand, S. Morasca, and V. Basili, “Defining and Validating Measures for Object-Based High-Level
Design”, IEEE Transactions Software Engineering, Vol. 25, No. 5, 1999, pp. 722 – 743.

[29] L. Briand, J. Daly, J. Wuest, “A Unified Framework for Cohesion Measurement in Object-Oriented
Systems”, Empirical Software Engineering, Vol. 3, No. 1, 1998, pp. 65–117.

[30] S. Ebad, and M. Ahmed, “Functionality-Based Software Packaging Using Sequence Diagrams”, Software
Quality Journal, Vol. 23, No. 3, 2015, pp. 453-481.

[31] S. Ebad, and M. Ahmed, “Measuring Stability of Object Oriented Software Architectures”, IET Software,
Vol. 9, No. 3, 2015, pp. 76-82.

[32] Y. Hassan, “Measuring Software Architectural Stability Using Retrospective Analysis”, MS Thesis, King
Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, 2007.

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

110

Malaysian Journal of Computer Science. Vol. 30(2), 2017

[33] S. Ebad, and M. Ahmed, ”Review and Evaluation of Cohesion and Coupling Metrics at Package and
Subsystem Level”, Journal of Software (JSW), Vol. 11, No. 6, 2016, pp. 598-605.

[34] G. Boetticher, “Using Machine Learning to Predict Project Effort: Empirical Case Studies in Data-Starved
Domains”, in Proceedings of the First International Workshop on Model-Based Requirements Engineering,
San Diego, 26-29 Nov 2001, pp. 17-27.

[35] D. Bell, “UML basics: the sequence diagram”. Available at
http://www.ibm.com/developerworks/rational/library/3101.html, 16 Feb, 2004. [accessed at 1 Oct 2016]

[36] S. Ebad and M. Ahmed, “XMI2UC: An automatic tool to extract use cases from object-oriented source
code”, International Journal of Future Computer and Communication (IJFCC), Vol. 1, No. 2, 2012, pp.
193-195.

[37] G. Canfora, and L. Cerulo, “How Crosscutting Concerns Evolve in JHotDraw”, in Proceedings of the 13th
IEEE International Workshop on Software Technology and Engineering Practice, Budapest, Hungary, 24-
25 Sep 2005, pp.65-73.

[38] O. Seng, M. Bauer, M. Biehl, G. Pache, “Search-Based Improvement of Subsystem Decompositions”, in
Proceedings Conference on Genetic and Evolutionary Computation (GECCO ’05), Washington, DC, USA,
June 2005, pp. 1045-1051.

[39] O. Seng, J. Stammel, D. Burkhart, “Search Search-Based Determination of Refactorings for Improving The
Class Structure of Object Oriented Systems”, in Proceedings Conference on Genetic and Evolutionary
Computation (GECCO ’06), Seattle, WA, USA, July 2006, pp. 1909-1916.

[40] C. Wohlin, P. Runeson, M. H¨ost, M. C. Ohlsson, B. Regnell, A. Wessl´en, Experimentation in Software
Engineering, Springer, 2012.

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

111

Malaysian Journal of Computer Science. Vol. 30(2), 2017

APPENDIX

Below are four tables A.1 up to A.4 to list the removed UCs and new UCs for the considered JHotDraw version.
This information is obtained by the UC Information Document produced by the XMI2UC tool. The notation x$y
means Method x in Class y. This notation is used by XMI2UC to avoid ambiguity in naming, i.e. methods
having the same name located at different classes.

Table A.1: List of the UCs removed from version 5.1 (i.e. R values)

UC# UC Path

UC11 mouseMove$PolygonTool pointCount$PolygonFigure mouseMove$PolygonTool
setPointAt$PolygonFigure

UC18 draw$AttributeFigure hasDefined$FigureAttributes draw$AttributeFigure get$FigureAttributes
draw$AttributeFigure set$FigureAttributes draw$AttributeFigure isTransparent$ColorMap

UC19 getAttribute$AttributeFigure hasDefined$FigureAttributes getAttribute$AttributeFigure
get$FigureAttributes getAttribute$AttributeFigure set$FigureAttributes

UC20 getFrameColor$AttributeFigure hasDefined$FigureAttributes getFrameColor$AttributeFigure
get$FigureAttributes getFrameColor$AttributeFigure set$FigureAttributes

UC21 initializeAttributes$AttributeFigure set$FigureAttributes

UC22 read$AttributeFigure readString$StorableInput read$AttributeFigure read$FigureAttributes
readString$StorableInput read$FigureAttributes readInt$StorableInput read$FigureAttributes
readStorable$StorableInput read$Storable

UC23 setAttribute$AttributeFigure set$FigureAttributes

UC24 write$AttributeFigure writeString$StorableOutput write$AttributeFigure write$FigureAttributes
writeString$StorableOutput write$FigureAttributes writeInt$StorableOutput write$FigureAttributes
writeStorable$StorableOutput write$Storable

UC34 handles$ImageFigure addHandles$BoxHandleKit

UC33 execute$GroupCommand addAll$CompositeFigure

UC79 beginEdit$TextTool getText$FloatingTextField beginEdit$TextTool setText$TextHolder
beginEdit$TextTool endOverlay$FloatingTextField beginEdit$TextTool getFont$TextHolder
beginEdit$TextTool createOverlay$FloatingTextField beginEdit$TextTool textDisplayBox$TextHolder
 beginEdit$TextTool overlayColumns$TextHolder beginEdit$TextTool
getPreferredSize$FloatingTextField beginEdit$TextTool getText$TextHolder beginEdit$TextTool
setBounds$FloatingTextField

UC80 deactivate$TextTool getText$FloatingTextField deactivate$TextTool setText$TextHolder
deactivate$TextTool endOverlay$FloatingTextField

UC81 endEdit$TextTool getText$FloatingTextField endEdit$TextTool setText$TextHolder endEdit$TextTool
 endOverlay$FloatingTextField

UC82 fieldBounds$TextTool textDisplayBox$TextHolder fieldBounds$TextTool overlayColumns$TextHolder
 fieldBounds$TextTool getPreferredSize$FloatingTextField

UC83 mouseDown$TextTool acceptsTyping$TextHolder mouseDown$TextTool getText$FloatingTextField
mouseDown$TextTool setText$TextHolder mouseDown$TextTool endOverlay$FloatingTextField
mouseDown$TextTool getFont$TextHolder mouseDown$TextTool createOverlay$FloatingTextField
mouseDown$TextTool textDisplayBox$TextHolder mouseDown$TextTool overlayColumns$TextHolder
 mouseDown$TextTool getPreferredSize$FloatingTextField mouseDown$TextTool
getText$TextHolder mouseDown$TextTool setBounds$FloatingTextField

UC85 findPoint$AbstractConnector center$Geom

UC11

9
paintNormal$ToolButton normal$PaletteIcon

UC12

0
paintPressed$ToolButton pressed$PaletteIcon

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

112

Malaysian Journal of Computer Science. Vol. 30(2), 2017

Table A.2: List of the new UCs added to version 5.2 (i.e. N values)

UC# UC Path

UC1 mouseDown$CustomSelectionTool setSelectedFigure$PopupMenuFigureSelection

UC2 mouseUp$CustomSelectionTool setSelectedFigure$PopupMenuFigureSelection

UC3 showPopupMenu$CustomSelectionTool setSelectedFigure$PopupMenuFigureSelection

UC5 basicDisplayBox$GraphicalCompositeFigure layout$Layouter

UC6 layout$GraphicalCompositeFigure calculateLayout$Layouter layout$GraphicalCompositeFigure
layout$Layouter

UC7 read$GraphicalCompositeFigure readInt$StorableInput read$GraphicalCompositeFigure
readStorable$StorableInput read$Storable

UC8 update$GraphicalCompositeFigure calculateLayout$Layouter update$GraphicalCompositeFigure
layout$Layouter

UC9 write$GraphicalCompositeFigure writeInt$StorableOutput write$GraphicalCompositeFigure
writeStorable$StorableOutput write$Storable

UC25 handlePopupMenu$CustomSelectionTool
setSelectedFigure$PopupMenuFigureSelection

UC26 read$ArrowTip readDouble$StorableInput read$ArrowTip readString$StorableInput read$ArrowTip
readColor$FigureAttributes readInt$StorableInput

UC27 write$ArrowTip writeDouble$StorableOutput write$ArrowTip writeColor$FigureAttributes
writeString$StorableOutput writeColor$FigureAttributes writeInt$StorableOutput
writeColor$FigureAttributes write$ArrowTip writeString$StorableOutput

UC36 handles$GroupFigure northWest$RelativeLocator handles$GroupFigure northEast$RelativeLocator
handles$GroupFigure southWest$RelativeLocator handles$GroupFigure southEast$RelativeLocator

UC43 write$LineConnection writeInt$StorableOutput write$LineConnection writeStorable$StorableOutput
write$Storable writeStorable$StorableOutput
write$LineConnection writeColor$StorableOutput write$LineConnection writeStorable$StorableOutput
 write$Storable

UC70 changed$TextFigure locate$OffsetLocator

UC11

5
getMaximumSize$ToolButton getWidth$PaletteIcon getMaximumSize$ToolButton getHeight$PaletteIcon

UC11

8
paint$ToolButton selected$PaletteIcon paint$ToolButton selected$PaletteIcon

UC12

9
restore$StandardStorageFormat readStorable$StorableInput read$Storable

UC13

0
findStorageFormat$StorageFormatManager getFileFilter$StorageFormat

UC13

1
registerFileFilters$StorageFormatManager getFileFilter$StorageFormat

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

113

Malaysian Journal of Computer Science. Vol. 30(2), 2017

Table A.3: List of the UCs removed from version 5.2 (i.e. R values)

UC# UC Path

UC9 write$GraphicalCompositeFigure writeInt$StorableOutput write$GraphicalCompositeFigure
writeStorable$StorableOutput write$Storable

UC11 chop$PolygonFigure length2$Geom

UC12 distanceFromLine$PolygonFigure length$Geom

UC28 chop$ChopEllipseConnector pointToAngle$Geom chop$ChopEllipseConnector
ovalAngleToPoint$Geom

UC29 mouseDown$ConnectedTextTool acceptsTyping$TextHolder mouseDown$ConnectedTextTool
getText$FloatingTextField mouseDown$ConnectedTextTool setText$TextHolder
mouseDown$ConnectedTextTool endOverlay$FloatingTextField mouseDown$ConnectedTextTool
getFont$TextHolder mouseDown$ConnectedTextTool createOverlay$FloatingTextField
mouseDown$ConnectedTextTool textDisplayBox$TextHolder mouseDown$ConnectedTextTool
overlayColumns$TextHolder mouseDown$ConnectedTextTool getPreferredSize$FloatingTextField
mouseDown$ConnectedTextTool getText$TextHolder mouseDown$ConnectedTextTool
setBounds$FloatingTextField mouseDown$ConnectedTextTool connect$TextHolder

UC36 handles$GroupFigure northWest$RelativeLocator handles$GroupFigure northEast$RelativeLocator
handles$GroupFigure southWest$RelativeLocator handles$GroupFigure southEast$RelativeLocator

UC40 execute$InsertImageCommand instance$Iconkit execute$InsertImageCommand
registerAndLoadImage$Iconkit

UC45 containsPoint$PolyLineFigure lineContainsPoint$Geom

UC53 draw$RadiusHandle getArc$RoundRectangleFigure draw$RadiusHandle
displayBox$RoundRectangleFigure

UC54 invokeStart$RadiusHandle getArc$RoundRectangleFigure

UC55 invokeStep$RadiusHandle displayBox$RoundRectangleFigure
invokeStep$RadiusHandle range$Geom invokeStep$RadiusHandle setArc$RoundRectangleFigure

UC56 locate$RadiusHandle getArc$RoundRectangleFigure locate$RadiusHandle
displayBox$RoundRectangleFigure

UC64 mouseDown$ScribbleTool addPoint$PolyLineFigure

UC77 read$TextFigure readString$StorableInput read$TextFigure read$FigureAttributes
readString$StorableInput read$FigureAttributes readInt$StorableInput read$FigureAttributes
readStorable$StorableInput read$Storable readStorable$StorableInput read$FigureAttributes
read$TextFigure readInt$StorableInput read$TextFigure readBoolean$StorableInput read$TextFigure
 readStorable$StorableInput read$Storable

UC78 setAttribute$TextFigure locate$OffsetLocator setAttribute$TextFigure locate$OffsetLocator
setAttribute$TextFigure locate$OffsetLocator setAttribute$TextFigure set$FigureAttributes
setAttribute$TextFigure locate$OffsetLocator

UC82 write$TextFigure writeString$StorableOutput write$TextFigure write$FigureAttributes
writeString$StorableOutput write$FigureAttributes writeInt$StorableOutput write$FigureAttributes
writeStorable$StorableOutput write$Storable writeStorable$StorableOutput write$FigureAttributes
write$TextFigure writeInt$StorableOutput write$TextFigure writeBoolean$StorableOutput
write$TextFigure writeStorable$StorableOutput write$OffsetLocator writeInt$StorableOutput
write$OffsetLocator writeInt$StorableOutput

UC89 connectedTextLocator$AbstractFigure center$RelativeLocator

UC90 invokeStep$ChangeConnectionHandle center$Geom

UC94 read$CompositeFigure readInt$StorableInput read$CompositeFigure readStorable$StorableInput
read$Storable

UC97 mouseDrag$ConnectionTool center$Geom

UC99 execute$CutCommand getClipboard$Clipboard execute$CutCommand setContents$Clipboard

UC101 copySelection$FigureTransferCommand getClipboard$Clipboard copySelection$FigureTransferCommand
 setContents$Clipboard

UC104 execute$PasteCommand getClipboard$Clipboard execute$PasteCommand getContents$Clipboard

UC111 constrainPoint$StandardDrawingView range$Geom constrainPoint$StandardDrawingView range$Geom

UC112 mouseDragged$StandardDrawingView range$Geom mouseDragged$StandardDrawingView
range$Geom

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

114

Malaysian Journal of Computer Science. Vol. 30(2), 2017

Table A.4: List of the new UCs added to version 5.3 (i.e. N values)

UC113 mousePressed$StandardDrawingView range$Geom mousePressed$StandardDrawingView range$Geom

UC114 mouseReleased$StandardDrawingView range$Geom mouseReleased$StandardDrawingView
range$Geom

UC126 mouseExited$PaletteButton paletteUserOver$PaletteListener

UC128 mouseReleased$PaletteButton paletteUserSelected$PaletteListener

UC# UC Path

UC1 chop$ChopDiamondConnector pointToAngle$Geom chop$ChopDiamondConnector
angleToPoint$Geom

UC6 chop$DiamondFigure chop$PolygonFigure length2$Geom

UC12 endDraggingFrame$MDIDesktopManager setAllSize$MDIDesktopPane

UC13 endResizingFrame$MDIDesktopManager setAllSize$MDIDesktopPane

UC14 add$MDIDesktopPane resizeDesktop$MDIDesktopManager setAllSize$MDIDesktopPane

UC15 cascadeFrames$MDIDesktopPane setNormalSize$MDIDesktopManager setAllSize$MDIDesktopPane
setNormalSize$MDIDesktopManager cascadeFrames$MDIDesktopPane
resizeDesktop$MDIDesktopManager setAllSize$MDIDesktopPane

UC16 checkDesktopSize$MDIDesktopPane resizeDesktop$MDIDesktopManager setAllSize$MDIDesktopPane

UC17 remove$MDIDesktopPane resizeDesktop$MDIDesktopManager setAllSize$MDIDesktopPane

UC18 tileFrames$MDIDesktopPane setNormalSize$MDIDesktopManager setAllSize$MDIDesktopPane
setNormalSize$MDIDesktopManager tileFrames$MDIDesktopPane resizeDesktop$MDIDesktopManager
 setAllSize$MDIDesktopPane

UC23 activate$PolygonTool fireToolActivatedEvent$EventDispatcher

UC27 mouseDrag$PolygonTool addPoint$PolygonFigure

UC28 mouseMove$PolygonTool pointCount$PolygonFigure mouseMove$PolygonTool
setPointAt$PolygonFigure

UC35 read$AbstractLineDecoration readString$StorableInput read$AbstractLineDecoration
readColor$FigureAttributes readInt$StorableInput

UC36 write$AbstractLineDecoration writeColor$FigureAttributes writeString$StorableOutput
writeColor$FigureAttributes writeInt$StorableOutput
writeColor$FigureAttributes write$AbstractLineDecoration writeString$StorableOutput

UC39 draw$AttributeFigure hasDefined$FigureAttributes draw$AttributeFigure get$FigureAttributes
draw$AttributeFigure set$FigureAttributes draw$AttributeFigure isTransparent$ColorMap

UC40 getAttribute$AttributeFigure hasDefined$FigureAttributes getAttribute$AttributeFigure
get$FigureAttributes getAttribute$AttributeFigure set$FigureAttributes

UC41 getFillColor$AttributeFigure hasDefined$FigureAttributes getFillColor$AttributeFigure
get$FigureAttributes getFillColor$AttributeFigure
set$FigureAttributes

UC42 initializeAttributes$AttributeFigure set$FigureAttributes

UC43 read$AttributeFigure readString$StorableInput read$AttributeFigure read$FigureAttributes
readString$StorableInput read$FigureAttributes readInt$StorableInput read$FigureAttributes
readStorable$StorableInput read$Storable

UC44 setAttribute$AttributeFigure set$FigureAttributes

UC45 write$AttributeFigure writeString$StorableOutput write$AttributeFigure write$FigureAttributes
writeString$StorableOutput write$FigureAttributes writeInt$StorableOutput write$FigureAttributes
writeStorable$StorableOutput write$Storable

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

115

Malaysian Journal of Computer Science. Vol. 30(2), 2017

UC46 writeObject$AttributeFigure hasDefined$FigureAttributes writeObject$AttributeFigure
get$FigureAttributes writeObject$AttributeFigure set$FigureAttributes

UC53 draw$ImageFigure instance$Iconkit draw$ImageFigure getImage$Iconkit

UC54 handles$ImageFigure addHandles$BoxHandleKit

UC75 activate$ScribbleTool fireToolActivatedEvent$EventDispatcher

UC93 findPoint$AbstractConnector center$Geom

UC102 orphan$CompositeFigure add$QuadTree getAbsoluteBoundingRectangle2D$QuadTree

UC103 removeAll$CompositeFigure remove$QuadTree

UC107 activate$CreationTool fireToolUsableEvent$EventDispatcher

UC110 insertFigures$NullDrawingView pointToAngle$Geom insertFigures$NullDrawingView
angleToPoint$Geom

UC111 selectionElements$NullDrawingView fireToolActivatedEvent$EventDispatcher

UC118 mouseMove$SelectionTool writeDouble$StorableOutput

UC120 getData$StandardFigureSelection nextElement$ReverseVectorEnumerator

UC131 addCheckItem$CommandMenu name$Command

UC133 figureChanged$GraphLayout execute$Command

UC135 execute$RedoCommand name$Command execute$RedoCommand addCommandListener$Command

UC136 isExecutableWithView$RedoCommand isExecutable$Command

UC138 assertCompatibleVersion$StandardVersionControlStrategy paletteUserOver$PaletteListener

UC139 handleIncompatibleVersions$StandardVersionControlStrategy isRedoable$UndoManager
isRedoable$Undoable isRedoable$UndoManager
handleIncompatibleVersions$StandardVersionControlStrategy popRedo$UndoManager
handleIncompatibleVersions$StandardVersionControlStrategy redo$Undoable
handleIncompatibleVersions$StandardVersionControlStrategy isUndoable$Undoable
handleIncompatibleVersions$StandardVersionControlStrategy pushUndo$UndoManager
isUndoable$Undoable pushUndo$UndoManager
handleIncompatibleVersions$StandardVersionControlStrategy getDrawingView$Undoable

UC140 isCompatibleVersion$StandardVersionControlStrategy getRedoSize$UndoManager

UC143 duplicateAffectedFigures$UndoableAdapter read$Storable

UC144 release$UndoableAdapter write$Storable

UC145 execute$UndoableCommand getFileFilter$StorageFormat

UC146 view$UndoableCommand getFileFilter$StorageFormat

UC146 invokeEnd$UndoableHandle getFileFilter$StorageFormat

UC147 invokeEnd$UndoableHandle duplicateFigures$StandardFigureSelection writeInt$StorableOutput
duplicateFigures$StandardFigureSelection writeStorable$StorableOutput write$Storable
writeStorable$StorableOutput duplicateFigures$StandardFigureSelection close$StorableOutput
duplicateFigures$StandardFigureSelection readInt$StorableInput
duplicateFigures$StandardFigureSelection readStorable$StorableInput read$Storable

UC148 deactivate$UndoableTool getEmptyEnumeration$FigureEnumerator

UC149 execute$UndoCommand getDrawingEditor$Command execute$UndoCommand execute$Command
execute$UndoCommand getUndoActivity$Command execute$UndoCommand isUndoable$Undoable

UC150 isExecutableWithView$UndoCommand getDrawingEditor$Command

UC151 getAffectedFigures$UndoRedoActivity isUndoable$Undoable

UC152 getAffectedFiguresCount$UndoRedoActivity isUndoable$UndoManager isUndoable$Undoable
isUndoable$UndoManager getAffectedFiguresCount$UndoRedoActivity popUndo$UndoManager
getAffectedFiguresCount$UndoRedoActivity undo$Undoable
getAffectedFiguresCount$UndoRedoActivity isRedoable$Undoable
getAffectedFiguresCount$UndoRedoActivity pushRedo$UndoManager isRedoable$Undoable
pushRedo$UndoManager getAffectedFiguresCount$UndoRedoActivity getDrawingView$Undoable

UC153 getDrawingView$UndoRedoActivity getUndoSize$UndoManager

UC154 isRedoable$UndoRedoActivity isRedoable$Undoable

Towards Measuring Software Requirements Volatility: A Retrospective Analysis. pp 99-116

116

Malaysian Journal of Computer Science. Vol. 30(2), 2017

UC155 isUndoable$UndoRedoActivity getAffectedFigures$Undoable

UC156 redo$UndoRedoActivity getAffectedFiguresCount$Undoable

UC157 release$UndoRedoActivity getDrawingView$Undoable

UC158 setAffectedFigures$UndoRedoActivity isUndoable$Undoable

UC159 setRedoable$UndoRedoActivity isRedoable$Undoable

UC160 setUndoable$UndoRedoActivity isRedoable$Undoable setUndoable$UndoRedoActivity
undo$Undoable

UC161 undo$UndoRedoActivity release$Undoable

UC162 undo$UndoRedoActivity setAffectedFigures$Undoable

UC163 undo$UndoRedoActivity setUndoable$Undoable

UC164 undo$UndoRedoActivity setRedoable$Undoable

UC165 undo$UndoRedoActivity isUndoable$Undoable undo$UndoRedoActivity redo$Undoable

